Publications

  1. Selective Classification Via Neural Network Training Dynamics


    Stephan Rabanser*, Anvith Thudi, Kimia Hamidieh, Adam Dziedzic, Nicolas Papernot
    arXiv preprint arXiv:2205.13532 (2022) Preprint

    Paper Slides


  2. The Effectiveness of Discretization in Forecasting: An Empirical Study on Neural Time Series Models


    Stephan Rabanser*, Tim Januschowski, Valentin Flunkert, David Salinas, Jan Gasthaus
    In 7th KDD Workshop on Mining and Learning from Time Series (MiLeTS) (2020) Workshop Oral

    Paper Slides Video


  3. Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift


    Stephan Rabanser*, Stephan Günnemann, Zachary Lipton
    In Advances in Neural Information Processing Systems (2019) Conference

    Paper Poster Slides Code


  4. Improving Online GMM Learning Via Covariance Weighting


    Stephan Rabanser*, Maksim Greiner
    (2018) Preprint

    Paper


  5. Denoising Spectral Clustering Through Latent Data Decomposition


    Stephan Rabanser*, Oleksandr Shchur, Stephan Günnemann
    (2018) Preprint

    Paper


  6. Introduction to Tensor Decompositions and their Applications in Machine Learning


    Stephan Rabanser*, Oleksandr Shchur, Stephan Günnemann
    arXiv preprint arXiv:1711.10781 (2017) Preprint

    Paper


* indicates joint first-authorship.