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ŷ = fθ∗(x ′)

In
fe

re
nc

e

Training Data
(x , y)

Data Poisoning

Hypothesis Class
fθ ∈ F

Backdooring

Predictive Model
fθ∗

Differential Privacy
Model Stealing

Test Data
(x ′, )

Adversarial Examples
Anomalous Inputs

Test Data
(x ′, )

Predictive Model
fθ∗

Differential Privacy
m

Selective Prediction

DP Models That Know What They Don’t Know 2



Warmup: (Supervised) Machine Learning Pipeline

Hypothesis Class
fθ ∈ F

Training Data
(x , y)

Predictive Model
fθ∗

T
ra

in
in

g

Test Data
(x ′, )

Predictions
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Motivation: Input Sample Rejection
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Selective Classification (SC)

Selective classification adds a rejection class ⊥ via a gating mechanism.

Goal: Derive a selection function g : X → R which, given an acceptance threshold τ ,
determines whether a model f : X → Y should predict on a data point x .

(f , g)(x) =

{
f (x) g(x) ≤ τ
⊥ otherwise.

The performance of a selective classifier (f , g) on a dataset D is assessed based on

• the coverage of (f , g), i.e. what fraction of points we predict on; and

• the selective accuracy of (f , g) on the points it accepts.

covτ (f , g) =
|{x : g(x) ≤ τ}|

|D| accτ (f , g) =
|{x : f (x) = y , g(x) ≤ τ}|

|{x : g(x) ≤ τ}|
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SC via Neural Net Training Dynamics: Method Overview
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SC via Neural Net Training Dynamics: Method Overview (cont’d)
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SC via Neural Net Training Dynamics: Method Overview (cont’d)

…

…

…

…

…

…

…

…

…

…

…

…

Intermediate models

Testing stage
Test point

DP Models That Know What They Don’t Know 6



SC via Neural Net Training Dynamics: Method Overview (cont’d)
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SC via Neural Net Training Dynamics: Method Overview (cont’d)
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SC via Neural Net Training Dynamics: Method Overview (cont’d)

Checkpoints

C
la

ss

Low agreement with 
final class → ⊥

C
la

ss

Large agreement with 
final class → 5

…

…

…

…

…

…

…

…

…

…

…

…

Intermediate models

Testing stage
Test point

DP Models That Know What They Don’t Know 6



Differential Privacy

Definition: Differential Privacy

A randomized algorithm M satisfies (ε, δ) differential privacy, if for any two
datasets D,D ′ ⊆ D that differ in any one record and any set of outputs S the
following inequality holds:

P [M(D) ∈ S ] ≤ eεP
[
M(D ′) ∈ S

]
+ δ

The above DP bound is governed by two parameters:

• ε ∈ R+ which specifies the privacy level; and

• δ ∈ [0, 1] which allows for a small violation of the bound.

The most widely used implementation for ensuring DP in deep neural nets is DP-SGD.

DP Models That Know What They Don’t Know 7



Impacts of SC on DP Guarantees

Post-Processing

If a function φ(x) satisfies (ε, δ)-DP,
then for any deterministic or random-
ized function ψ(·),ψ ◦φ(x) continues
to satisfy (ε, δ)-DP.

Applicable to: Softmax Response (SR),
Monte-Carlo Dropout (MCDO), Deep
Gamblers (DG), Self-Adaptive Training
(SAT), Selective Classification Training
Dynamics (SCTD)

Advanced Sequential Composition

If for a set {φ1(x), . . . , φM(x)} each
φi (x) satisfies (ε, δ)-DP, then releas-
ing ψ(x) = (φ1(x), . . . , φM(x)) sat-
isfies ≈ (

√
Mε,Mδ)-DP.

If the original (ε, δ)-DP constraint
should be maintained, each function
needs to satisfy ≈ ( ε√

M
, δM )-DP.

Applicable to: Deep Ensembles (DE),
SelectiveNet (SN)
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Impacts of DP on SC Performance

• We expect DP to impact SC beyond a loss in utility.

• Sample points from a majority class and an outlier point x∗ from a minority class.

• Train multiple differentially private models with ε ∈ {∞, 7, 3, 1}.
• Non-private model has best accuracy (and uncertainty) but is influenced by x∗.
• All models with ε ∈ {7, 3, 1} misclassify the outlier and the changing decision

boundary increases wrongful overconfidence as ε decreases.
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Evaluating SC under DP

• Default approach to quantify SC performance without accuracy bias is to align
different SC approaches/models at the same accuracy and evaluate

sAUC(f , g) =

∫ 1

0
accc(f , g)dc accc(f , g) = accτ (f , g) for τ s.t. covτ (f , g) = c

• Accuracy-aligning can have unintended consequences on SC performance.

• Early-stopping is the de-facto way of ensuring accuracy-alignment.

• But: Training for less leads to expending less privacy budget.

• Early-stopping yields a DP model with greater privacy than the targeted ε.

How do we quantify performance across SC methods and ε-levels where
accuracy-alignment is not possible?

DP Models That Know What They Don’t Know 10



Upper Bound On Selective Classification Performance

Definition: Upper SC Perf. Bound

The upper bound for selective classi-
fication performance for a fixed full-
coverage accuracy afull ∈ [0, 1] and
a variable coverage level c ∈ [0, 1] is
given by

acc(afull, c) =

{
1 0 < c ≤ afull
afull
c afull < c < 1

Optimal SC methods accept all correct
points first and incorrect points afterwards.
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Accuracy-Normalized Score For Selective Classification

Definition: Acc-normalized SC Score

The accuracy-normalized selective
classification score safull(f , g) for a
selective classifier (f , g) with full-
coverage accuracy afull is given by

safull(f , g) =

∫ 1

0

(acc(afull, c)− accc(f , g))dc

≈
∑
c

(acc(afull, c)− accc(f , g))

A good selective classifier should achieve a
low score (safull(f , g) ≈ 0), indicating
closeness to the optimal bound acc(afull, c).
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Accuracy-Coverage Tradeoff Across Datasets & ε Levels
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Upper Bound Closeness for SCTD
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Accuracy-Normalized Selective Classification Performance

FashionMNIST CIFAR-10

ε =∞ ε = 7 ε = 3 ε = 1 ε =∞ ε = 7 ε = 3 ε = 1

MSP 0.019 (±0.000) 0.023 (±0.000) 0.027 (±0.002) 0.041 (±0.001) 0.019 (±0.000) 0.105 (±0.002) 0.133 (±0.002) 0.205 (±0.001)
SAT 0.014 (±0.000) 0.020 (±0.001) 0.026 (±0.002) 0.043 (±0.002) 0.010 (±0.000) 0.107 (±0.000) 0.128 (±0.000) 0.214 (±0.002)
MCDO 0.020 (±0.002) 0.023 (±0.001) 0.030 (±0.003) 0.053 (±0.001) 0.021 (±0.001) 0.110 (±0.000) 0.142 (±0.000) 0.201 (±0.000)
DE 0.010 (±0.003) 0.027 (±0.002) 0.027 (±0.002) 0.039 (±0.000) 0.007 (±0.001) 0.099 (±0.002) 0.138 (±0.000) 0.222 (±0.000)
SN 0.008 (±0.002) 0.058 (±0.001) 0.056 (±0.001) 0.064 (±0.002) 0.015 (±0.000) 0.155 (±0.003) 0.154 (±0.002) 0.173 (±0.001)

SCTD 0.007 (±0.001) 0.021 (±0.001) 0.023 (±0.003) 0.032 (±0.002) 0.009 (±0.002) 0.098 (±0.001) 0.107 (±0.001) 0.152 (±0.001)

SVHN GTSRB

MSP 0.008 (±0.001) 0.020 (±0.001) 0.024 (±0.001) 0.040 (±0.001) 0.001 (±0.001) 0.006 (±0.002) 0.017 (±0.000) 0.109 (±0.002)
SAT 0.004 (±0.000) 0.019 (±0.000) 0.021 (±0.002) 0.044 (±0.002) 0.001 (±0.001) 0.008 (±0.001) 0.014 (±0.000) 0.089 (±0.000)
MCDO 0.009 (±0.000) 0.019 (±0.001) 0.027 (±0.002) 0.069 (±0.001) 0.002 (±0.001) 0.007 (±0.001) 0.023 (±0.001) 0.110 (±0.001)
DE 0.004 (±0.001) 0.018 (±0.001) 0.022 (±0.002) 0.067 (±0.003) 0.001 (±0.000) 0.003 (±0.002) 0.027 (±0.004) 0.127 (±0.002)
SN 0.004 (±0.000) 0.055 (±0.001) 0.052 (±0.000) 0.096 (±0.000) 0.001 (±0.001) 0.050 (±0.004) 0.044 (±0.001) 0.091 (±0.004)

SCTD 0.003 (±0.001) 0.016 (±0.001) 0.018 (±0.002) 0.027 (±0.001) 0.011 (±0.002) 0.005 (±0.000) 0.009 (±0.000) 0.062 (±0.001)

SCTD has the strongest performance, i.e. the lowest bound distance.
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Coverage Required For Non-Private Full-Coverage Accuracy

FashionMNIST CIFAR-10

ε = 7 ε = 3 ε = 1 ε = 7 ε = 3 ε = 1

MSP 0.83 (±0.01) 0.80 (±0.01) 0.65 (±0.03) 0.29 (±0.02) 0.14 (±0.04) 0.00 (±0.00)
SAT 0.86 (±0.00) 0.81 (±0.01) 0.67 (±0.02) 0.25 (±0.01) 0.19 (±0.02) 0.00 (±0.00)
MCDO 0.84 (±0.02) 0.79 (±0.00) 0.56 (±0.02) 0.25 (±0.01) 0.12 (±0.02) 0.00 (±0.00)
DE 0.75 (±0.00) 0.75 (±0.01) 0.61 (±0.01) 0.22 (±0.01) 0.09 (±0.00) 0.00 (±0.00)

SCTD 0.86 (±0.01) 0.84 (±0.02) 0.73 (±0.01) 0.26 (±0.03) 0.20 (±0.03) 0.04 (±0.04)

SVHN GTSRB

MSP 0.74 (±0.00) 0.67 (±0.01) 0.49 (±0.02) 0.90 (±0.01) 0.71 (±0.03) 0.13 (±0.00)
SAT 0.72 (±0.00) 0.67 (±0.01) 0.45 (±0.02) 0.86 (±0.00) 0.74 (±0.00) 0.20 (±0.03)
MCDO 0.74 (±0.00) 0.64 (±0.00) 0.23 (±0.03) 0.90 (±0.01) 0.69 (±0.01) 0.14 (±0.01)
DE 0.69 (±0.01) 0.62 (±0.01) 0.22 (±0.00) 0.93 (±0.00) 0.57 (±0.08) 0.10 (±0.04)

SCTD 0.78 (±0.01) 0.72 (±0.00) 0.59 (±0.02) 0.93 (±0.01) 0.83 (±0.03) 0.30 (±0.02)

SCTD retains the largest amount of coverage.
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Conclusion

• Analyzed how SC impacts DP guarantees and how DP impacts SC performance.

• Introduced a novel score to disentangle SC performance from baseline utility.

• SC performance degrades with stronger privacy (i.e. as ε→ 0).

• SCTD works best to quantify uncertainty under DP.

Stephan Anvith Abhradeep Dj Nicolas

Training Private Models That Know What They Don’t Know
https://arxiv.org/abs/2305.18393
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The Sum Score ssum
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else accept x with prediction L.

3. If ssum < τ accept x with
prediction L, else reject (⊥).
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The SCTD Algorithm

Algorithm 0: SCTD

Require: Checkpointed model sequence {f1, . . . , fT}, query point x , weighting
parameter k ∈ [0,∞).

1: Compute prediction of last model: L← fT (x)
2: Compute disagreement and weighting of intermediate predictions:
3: for t ∈ [T ] do
4: if ft(x) = L then at ← 0 else at ← 1
5: vt ← 1− ( t

T )k

6: end for
7: Compute sum score: ssum ←

∑
t atvt

8: if ssum ≤ τ then accept f (x) = L else reject with f (x) = ⊥
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Individual SVHN Example
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Individual SVHN Example
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SC Performance Over Accuracy-Coverage Curve

Dataset SR SAT DE SCTD DE+SCTD

CIFAR-10 0.971 0.978 0.980 0.980 0.981
CIFAR-100 0.895 0.900 0.909 0.909 0.912
Food101 0.935 0.939 0.945 0.946 0.947

StanfordCars 0.920 0.927 0.930 0.931 0.934

• SCTD offers comparable performance to DE.

• Combining DE with SCTD (DE+SCTD) delivers new SOTA performance.
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Score Distributions Of Correct And Incorrect Points
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• Correct predictions concentrate at 0 (prediction stability).

• Incorrect predictions spread over a wide score range (prediction instability).
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Monitoring E[·] and V[·]
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• Patterns for optimized points overlap with correctly classified test points.

• Correctly classified points have both E[ct ] and V[ct ] quickly decreasing to 0.

• Incorrectly classified points exhibit large expectations and variances.
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Performance of smax vs ssum
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Figure: Comparing smax and ssum performance. It is evident that ssum effectively denoises
smax.
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Ablation On Number of Checkpoints
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Figure: Coverage/error trade-off of SCTD(savg) for varying total number of checkpoints.
As the checkpointing resolution decreases, accuracy at low coverage increasingly degrades,
thereby showing that a detailed characterization of the training dynamics is helpful to attain
high target accuracy.
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Ablation Over k
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Figure: Coverage/error trade-off of SCTD(savg, k) for varying checkpoint weighting k as
used in vt . We observe strong performance for k ∈ [2, 5] across datasets.

DP Models That Know What They Don’t Know 27



Incorporating et And vt Into ssum
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Figure: Coverage/error trade-off when incorporating et and vt into smax and ssum. We see
that our simplifying assumptions match the performance attained from empirical estimation of
et and vt .
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Detectability of OOD and Adversarial Examples
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Figure: Performance of SCTD(ssum) on out-of-distribution (OOD) and adversarial sample
detection on CIFAR-10 and CIFAR-100. The first row shows the score distribution of the
in-distribution test set vs the SVHN OOD test set or a set consisting of adversarial samples
generated via a PGD attack in the final model. The second row shows the effectiveness of a
thresholding mechanism by computing the area under the ROC curve.
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DP-SGD

Algorithm 1: DP-SGD

Require: Training dataset D, loss function `, learning rate η, noise multiplier σ, sampling rate q,
clipping norm c, iterations T .

1: Initialize θ0
2: for t ∈ [T ] do
3: 1. Per-Sample Gradient Computation
4: Sample Bt with per-point prob. q from D
5: for i ∈ Bt do
6: gt(xi )← ∇θt `(θt , xi )
7: end for
8: 2. Gradient Clipping
9: ḡt(xi )← gt(xi )/max

(
1, ‖gt (xi )‖2

c

)
10: 3. Noise Addition
11: g̃t ← 1

|Bt |

(∑
i ḡt(xi ) +N (0, (σc)2I)

)
12: θt+1 ← θt − ηg̃t
13: end for
14: Output θT , privacy cost (ε, δ) computed via a privacy accounting procedure
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Composition-Based Deep Ensembles VS Partitioned Deep Ensembles
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Class Imbalance Results on CIFAR-10
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Upper Bound Reachability
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Upper Accuracy-Coverage Bound Achieved Accuracy-Coverage Tradeoff

• Assume a binary classif. setting with label vector y ∈ {0, 1}n0+n1 and n0 = n1.

• Generate a prediction vector p which overlaps with y for a fraction of afull.

• Sample a scoring vector s where each correct prediction is assigned a score
si ∼ U0,0.5 and each incorrect prediction is assigned a score si ∼ U0.5,1.

• This score is optimal since all si < 0.5 correspond to a correct prediction, while all
si ≥ 0.5 correspond to an incorrect prediction.
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