Training Private Models That Know What They Don't Know

Stephan Rabanser

stephan@cs.toronto.edu

September 21, 2023

 $\begin{array}{rl} \mathsf{Hypothesis} \ \mathsf{Class} \\ f_{\boldsymbol{\theta}} \ \in \ \mathcal{F} \end{array}$

VECTOR

INSTITUTE

UNIVERSITY OF

UNIVERSITY OF

DP Models That Know What They Don't Know

VECTOR

INSTITUTE

UNIVERSITY OF

UNIVERSITY OF

VECTOR

INSTITUTE

UNIVERSITY OF

TORONITC

UNIVERSITY OF

Motivation: Input Sample Rejection

5

Motivation: Input Sample Rejection

UNIVERSITY OF

CAMBRIDGE

TP

VECTOR

INSTITUTE

Motivation: Input Sample Rejection

UNIVERSITY OF

CAMBRIDGE

TP

VECTOR

INSTITUTE

Selective classification adds a rejection class \perp via a gating mechanism.

UNIVERSITY OF

Selective classification adds a rejection class \perp via a gating mechanism.

Goal: Derive a selection function $g : \mathcal{X} \to \mathbb{R}$ which, given an acceptance threshold τ , determines whether a model $f : \mathcal{X} \to \mathcal{Y}$ should predict on a data point \mathbf{x} .

$$(f,g)(oldsymbol{x}) = egin{cases} f(oldsymbol{x}) & g(oldsymbol{x}) \leq au \ oldsymbol{\perp} & ext{otherwise.} \end{cases}$$

UNIVERSITY OF

Selective classification adds a rejection class \perp via a gating mechanism.

Goal: Derive a selection function $g : \mathcal{X} \to \mathbb{R}$ which, given an acceptance threshold τ , determines whether a model $f : \mathcal{X} \to \mathcal{Y}$ should predict on a data point \mathbf{x} .

$$(f,g)(oldsymbol{x}) = egin{cases} f(oldsymbol{x}) & g(oldsymbol{x}) \leq au \ oldsymbol{\perp} & ext{otherwise.} \end{cases}$$

The performance of a selective classifier (f, g) on a dataset D is assessed based on

- the coverage of (f, g), i.e. what fraction of points we predict on; and
- the selective *accuracy* of (f, g) on the points it accepts.

$$\operatorname{cov}_{\tau}(f,g) = rac{|\{m{x}:g(m{x}) \leq \tau\}|}{|D|} \qquad \operatorname{acc}_{\tau}(f,g) = rac{|\{m{x}:f(m{x}) = y,g(m{x}) \leq \tau\}|}{|\{m{x}:g(m{x}) \leq \tau\}|}$$

(

Training stage

Training set

VECTOR

INSTITUTE

UNIVERSITY OF

TORONITC

UNIVERSITY OF

Testing stage

Intermediate models

UNIVERSITY OF

Testing stage

UNIVERSITY OF

Testing stage

UNIVERSITY OF

CAMBRIDGE

VECTOR

UNIVERSITY OF

Testing stage

UNIVERSITY OF

CAMBRIDGE

VECTOR

UNIVERSITY OF

Testing stage

VECTOR

NIST TUTE

UNIVERSITY OF

UNIVERSITY OF

Definition: Differential Privacy

A randomized algorithm \mathcal{M} satisfies (ε, δ) differential privacy, if for any two datasets $D, D' \subseteq \mathcal{D}$ that differ in any one record and any set of outputs S the following inequality holds:

 $\mathbb{P}\left[\mathcal{M}(D)\in S
ight]\leq e^{arepsilon}\mathbb{P}\left[\mathcal{M}(D')\in S
ight]+\delta$

The above DP bound is governed by two parameters:

- $\varepsilon \in \mathbb{R}_+$ which specifies the privacy level; and
- $\delta \in [0,1]$ which allows for a small violation of the bound.

The most widely used implementation for ensuring DP in deep neural nets is DP-SGD.

Post-Processing

If a function $\phi(x)$ satisfies (ε, δ) -DP, then for any deterministic or randomized function $\psi(\cdot), \psi \circ \phi(x)$ continues to satisfy (ε, δ) -DP.

Applicable to: Softmax Response (SR), Monte-Carlo Dropout (MCDO), Deep Gamblers (DG), Self-Adaptive Training (SAT), Selective Classification Training Dynamics (SCTD)

UNIVERSITY OF

°AMBRIDGE

Post-Processing

If a function $\phi(x)$ satisfies (ε, δ) -DP, then for any deterministic or randomized function $\psi(\cdot), \psi \circ \phi(x)$ continues to satisfy (ε, δ) -DP.

Applicable to: Softmax Response (SR), Monte-Carlo Dropout (MCDO), Deep Gamblers (DG), Self-Adaptive Training (SAT), Selective Classification Training Dynamics (SCTD)

Advanced Sequential Composition

If for a set $\{\phi_1(x), \ldots, \phi_M(x)\}$ each $\phi_i(x)$ satisfies (ε, δ) -DP, then releasing $\psi(x) = (\phi_1(x), \ldots, \phi_M(x))$ satisfies $\approx (\sqrt{M}\varepsilon, M\delta)$ -DP. If the original (ε, δ) -DP constraint should be maintained, each function needs to satisfy $\approx (\frac{\varepsilon}{\sqrt{M}}, \frac{\delta}{M})$ -DP.

Applicable to: Deep Ensembles (DE), SelectiveNet (SN)

UNIVERSITY OF

Impacts of DP on SC Performance

- We expect DP to impact SC beyond a loss in utility.
- Sample points from a majority class and an outlier point x^* from a minority class.
- Train multiple differentially private models with $\varepsilon \in \{\infty, 7, 3, 1\}$.
- Non-private model has best accuracy (and uncertainty) but is influenced by x^* .
- All models with ε ∈ {7,3,1} misclassify the outlier and the changing decision boundary increases wrongful overconfidence as ε decreases.

DP Models That Know What They Don't Know

UNIVERSITY OF

Evaluating SC under DP

• Default approach to quantify SC performance without accuracy bias is to align different SC approaches/models at the same accuracy and evaluate

$$s_{\mathsf{AUC}}(f,g) = \int_0^1 \operatorname{acc}_c(f,g) dc$$
 $\operatorname{acc}_c(f,g) = \operatorname{acc}_\tau(f,g)$ for τ s.t. $\operatorname{cov}_\tau(f,g) = c$

- Accuracy-aligning can have unintended consequences on SC performance.
- Early-stopping is the de-facto way of ensuring accuracy-alignment.
- But: Training for less leads to expending less privacy budget.
- Early-stopping yields a DP model with greater privacy than the targeted ε .

How do we quantify performance across SC methods and ε -levels where accuracy-alignment is not possible?

Upper Bound On Selective Classification Performance

$$\overline{acc}(a_{full},c) = egin{cases} 1 & 0 < c \leq a_{full} \ rac{a_{full}}{c} & a_{full} < c < 1 \end{cases}$$

Optimal SC methods accept all correct points first and incorrect points afterwards.

CAMBRIDGE

DP Models That Know What They Don't Know

Accuracy-Normalized Score For Selective Classification

Definition: Acc-normalized SC Score

The accuracy-normalized selective classification score $s_{a_{full}}(f,g)$ for a selective classifier (f,g) with full-coverage accuracy a_{full} is given by

$$egin{aligned} s_{a_{full}}(f,g) &= \int_{0}^{1} (\overline{acc}(a_{full},c) - acc_{c}(f,g)) dc \ &pprox \sum_{c} (\overline{acc}(a_{full},c) - acc_{c}(f,g)) \end{aligned}$$

A good selective classifier should achieve a low score $(s_{a_{\text{full}}}(f,g) \approx 0)$, indicating closeness to the optimal bound $\overline{\operatorname{acc}}(a_{\text{full}},c)$.

CAMBRIDGF

Accuracy-Coverage Tradeoff Across Datasets & ε Levels

DP Models That Know What They Don't Know

UNIVERSITY OF

TP

CAMBRIDGE

VECTOR

INSTITUTE

UNIVERSITY OF

Ŵ

Upper Bound Closeness for SCTD

DP Models That Know What They Don't Know

14

TORONTO

INSTITUTE

TP

Accuracy-Normalized Selective Classification Performance

	FashionMNIST				CIFAR-10			
	$\epsilon = \infty$	$\epsilon = 7$	$\epsilon = 3$	$\epsilon = 1$	$\epsilon = \infty$	$\epsilon = 7$	$\epsilon = 3$	$\epsilon = 1$
MSP SAT MCDO DE SN SCTD	0.019 (±0.000) 0.014 (±0.000) 0.020 (±0.002) 0.010 (±0.003) 0.008 (±0.002) 0.007 (±0.001)	0.023 (±0.000) 0.020 (±0.001) 0.023 (±0.001) 0.027 (±0.002) 0.058 (±0.001) 0.021 (±0.001)	0.027 (±0.002) 0.026 (±0.002) 0.030 (±0.003) 0.027 (±0.002) 0.056 (±0.001) 0.023 (±0.003)	0.041 (±0.001) 0.043 (±0.002) 0.053 (±0.001) 0.039 (±0.000) 0.064 (±0.002) 0.032 (±0.002)	0.019 (±0.000) 0.010 (±0.000) 0.021 (±0.001) 0.007 (±0.001) 0.015 (±0.000) 0.009 (±0.002)	0.105 (±0.002) 0.107 (±0.000) 0.110 (±0.000) 0.099 (±0.002) 0.155 (±0.003) 0.098 (±0.001)	0.133 (±0.002) 0.128 (±0.000) 0.142 (±0.000) 0.138 (±0.000) 0.154 (±0.002) 0.107 (±0.001)	0.205 (±0.001) 0.214 (±0.002) 0.201 (±0.000) 0.222 (±0.000) 0.173 (±0.001) 0.152 (±0.001)
	SVHN				GTSRB			
MSP SAT MCDO DE SN SCTD	0.008 (±0.001) 0.004 (±0.000) 0.009 (±0.000) 0.004 (±0.001) 0.004 (±0.000) 0.003 (±0.001)	0.020 (±0.001) 0.019 (±0.000) 0.019 (±0.001) 0.018 (±0.001) 0.055 (±0.001) 0.016 (±0.001)	0.024 (±0.001) 0.021 (±0.002) 0.027 (±0.002) 0.022 (±0.002) 0.052 (±0.000) 0.018 (±0.002)	0.040 (±0.001) 0.044 (±0.002) 0.069 (±0.001) 0.067 (±0.003) 0.096 (±0.000) 0.027 (±0.001)	0.001 (±0.001) 0.001 (±0.001) 0.002 (±0.001) 0.001 (±0.000) 0.001 (±0.001) 0.011 (±0.002)	0.006 (±0.002) 0.008 (±0.001) 0.007 (±0.001) 0.003 (±0.002) 0.050 (±0.004) 0.005 (±0.000)	0.017 (±0.000) 0.014 (±0.000) 0.023 (±0.001) 0.027 (±0.004) 0.044 (±0.001) 0.009 (±0.000)	0.109 (±0.002) 0.089 (±0.000) 0.110 (±0.001) 0.127 (±0.002) 0.091 (±0.004) 0.062 (±0.001)

SCTD has the strongest performance, i.e. the lowest bound distance.

15

Coverage Required For Non-Private Full-Coverage Accuracy

		FashionMNIST		CIFAR-10			
	$\varepsilon = 7$	arepsilon=3	arepsilon=1	$\varepsilon = 7$	arepsilon=3	arepsilon=1	
MSP SAT MCDO DE SCTD	0.83 (±0.01) 0.86 (±0.00) 0.84 (±0.02) 0.75 (±0.00) 0.86 (±0.01)	0.80 (±0.01) 0.81 (±0.01) 0.79 (±0.00) 0.75 (±0.01) 0.84 (±0.02)	0.65 (±0.03) 0.67 (±0.02) 0.56 (±0.02) 0.61 (±0.01) 0.73 (±0.01)	0.29 (±0.02) 0.25 (±0.01) 0.25 (±0.01) 0.22 (±0.01) 0.26 (±0.03)	0.14 (±0.04) 0.19 (±0.02) 0.12 (±0.02) 0.09 (±0.00) 0.20 (±0.03)	0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.04 (±0.04)	
	SVHN			GTSRB			
MSP SAT MCDO DE SCTD	0.74 (±0.00) 0.72 (±0.00) 0.74 (±0.00) 0.69 (±0.01) 0.78 (±0.01)	0.67 (±0.01) 0.67 (±0.01) 0.64 (±0.00) 0.62 (±0.01) 0.72 (±0.00)	0.49 (±0.02) 0.45 (±0.02) 0.23 (±0.03) 0.22 (±0.00) 0.59 (±0.02)	0.90 (±0.01) 0.86 (±0.00) 0.90 (±0.01) 0.93 (±0.00) 0.93 (±0.01)	0.71 (±0.03) 0.74 (±0.00) 0.69 (±0.01) 0.57 (±0.08) 0.83 (±0.03)	0.13 (±0.00) 0.20 (±0.03) 0.14 (±0.01) 0.10 (±0.04) 0.30 (±0.02)	

SCTD retains the largest amount of coverage.

DP Models That Know What They Don't Know

Conclusion

- Analyzed how SC impacts DP guarantees and how DP impacts SC performance.
- Introduced a novel score to disentangle SC performance from baseline utility.
- SC performance degrades with stronger privacy (i.e. as $\varepsilon \to 0$).
- SCTD works best to quantify uncertainty under DP.

Stephan

Anvith

Abhradeep

Di

Nicolas

Training Private Models That Know What They Don't Know

https://arxiv.org/abs/2305.18393

Backup

DP Models That Know What They Don't Know

UNIVERSITY OF

CAMBRIDGE

R R

d P

VECTOR

INSTITUTE

DP Models That Know What They Don't Know

UNIVERSITY OF

CAMBRIDGE

R R

d P

VECTOR

INSTITUTE

DP Models That Know What They Don't Know

UNIVERSITY OF

CAMBRIDGE

R R

d P

VECTOR

INSTITUTE

DP Models That Know What They Don't Know

UNIVERSITY OF

CAMBRIDGE

TP

VECTOR

INSTITUTE

5 7

DP Models That Know What They Don't Know

UNIVERSITY OF CAMBRIDGE

VECTOR

INSTITUTE

T 1

DP Models That Know What They Don't Know

UNIVERSITY OF

CAMBRIDGE

TP

T 🕈 VECTOR

INSTITUTE

- 1. Denote $L = f_T(\mathbf{x})$, i.e. the label our final model predicts.
- 2. If $\exists t \ s.t \ a_t = 1$, compute

$$s_{sum} = \sum v_t a_t$$

VECTOR

CAMBRIDGE

else accept \boldsymbol{x} with prediction L.

3. If $s_{sum} < \tau$ accept \boldsymbol{x} with prediction L, else reject (\perp) .

UNIVERSITY OF

DP Models That Know What They Don't Know

Algorithm 0: SCTD

- **Require:** Checkpointed model sequence $\{f_1, \ldots, f_T\}$, query point \boldsymbol{x} , weighting parameter $k \in [0, \infty)$.
 - 1: Compute prediction of last model: $L \leftarrow f_T(\mathbf{x})$
 - 2: Compute disagreement and weighting of intermediate predictions:
- 3: for $t \in [T]$ do 4: if $f_t(\mathbf{x}) = L$ then $a_t \leftarrow 0$ else $a_t \leftarrow 1$ 5: $v_t \leftarrow 1 - (\frac{t}{T})^k$ 6: end for 7: Compute sum score: $s_{sum} \leftarrow \sum_t a_t v_t$ 8: if $s_{sum} < \tau$ then accept $f(\mathbf{x}) = L$ else reject with $f(\mathbf{x}) = \bot$

UNIVERSITY OF

Individual SVHN Example

Individual SVHN Example

UNIVERSITY OF CAMBRIDGE

VECTOR

5 1

SC Performance Over Accuracy-Coverage Curve

Dataset	SR	SAT	DE	SCTD	DE+SCTD
CIFAR-10	0.971	0.978	0.980	0.980	0.981
CIFAR-100	0.895	0.900	0.909	0.909	0.912
Food101	0.935	0.939	0.945	0.946	0.947
StanfordCars	0.920	0.927	0.930	0.931	0.934

- SCTD offers comparable performance to DE.
- Combining DE with SCTD (DE+SCTD) delivers new SOTA performance.

Score Distributions Of Correct And Incorrect Points

- Correct predictions concentrate at 0 (prediction stability).
- Incorrect predictions spread over a wide score range (prediction instability).

UNIVERSITY OF

Monitoring $\mathbb{E}[\cdot]$ and $\mathbb{V}[\cdot]$

- Patterns for optimized points overlap with correctly classified test points.
- Correctly classified points have both $\mathbb{E}[c_t]$ and $\mathbb{V}[c_t]$ quickly decreasing to 0.
- Incorrectly classified points exhibit large expectations and variances.

DP Models That Know What They Don't Know

UNIVERSITY OF

CORONITC

UNIVERSITY OF

Performance of s_{max} vs s_{sum}

Figure: Comparing s_{max} and s_{sum} performance. It is evident that s_{sum} effectively denoises s_{max} .

Ablation On Number of Checkpoints

Figure: Coverage/error trade-off of $SCTD(s_{avg})$ for varying total number of checkpoints. As the checkpointing resolution decreases, accuracy at low coverage increasingly degrades, thereby showing that a detailed characterization of the training dynamics is helpful to attain high target accuracy.

UNIVERSITY OF

UNIVERSITY OF

Figure: Coverage/error trade-off of $SCTD(s_{avg}, k)$ for varying checkpoint weighting k as used in v_t . We observe strong performance for $k \in [2, 5]$ across datasets.

VECTOR

UNIVERSITY OF

UNIVERSITY OF

Incorporating e_t And v_t Into s_{sum}

Figure: Coverage/error trade-off when incorporating e_t and v_t into s_{max} and s_{sum} . We see that our simplifying assumptions match the performance attained from empirical estimation of e_t and v_t .

Detectability of OOD and Adversarial Examples

Figure: Performance of $SCTD(s_{sum})$ on out-of-distribution (OOD) and adversarial sample detection on CIFAR-10 and CIFAR-100. The first row shows the score distribution of the in-distribution test set vs the SVHN OOD test set or a set consisting of adversarial samples generated via a PGD attack in the final model. The second row shows the effectiveness of a thresholding mechanism by computing the area under the ROC curve.

UNIVERSITY OF

CORONITC

INIVERSITY OF

DP-SGD

Algorithm 1: DP-SGD

- **Require:** Training dataset *D*, loss function ℓ , learning rate η , noise multiplier σ , sampling rate *q*, clipping norm *c*, iterations *T*.
- 1: Initialize θ_0
- 2: for $t \in [T]$ do
- 3: 1. Per-Sample Gradient Computation
- 4: Sample B_t with per-point prob. q from D
- 5: for $i \in B_t$ do
- 6: $g_t(\mathbf{x}_i) \leftarrow \nabla_{\theta_t} \ell(\theta_t, \mathbf{x}_i)$
- 7: end for
- 8: 2. Gradient Clipping
- 9: $\bar{g}_t(\mathbf{x}_i) \leftarrow g_t(\mathbf{x}_i) / \max\left(1, \frac{\|g_t(\mathbf{x}_i)\|_2}{c}\right)$
- 10: 3. Noise Addition
- 11: $\tilde{g}_t \leftarrow \frac{1}{|B_t|} \left(\sum_i \bar{g}_t(\mathbf{x}_i) + \mathcal{N}(0, (\sigma c)^2 \mathbf{I}) \right)$
- 12: $\theta_{t+1} \leftarrow \theta_t \eta \tilde{g}_t$
- 13: end for
- 14: Output θ_T , privacy cost (ε, δ) computed via a privacy accounting procedure

DP Models That Know What They Don't Know

UNIVERSITY OF

CAMBRIDGE

VECTOR

UNIVERSITY OF

Composition-Based Deep Ensembles VS Partitioned Deep Ensembles

DP Models That Know What They Don't Know

31

INSTITUTE

TP

Class Imbalance Results on CIFAR-10

DP Models That Know What They Don't Know

VECTOR

TORONTO

UNIVERSITY OF CAMBRIDGE

Upper Bound Reachability

- Assume a binary classif. setting with label vector $\mathbf{y} \in \{0,1\}^{n_0+n_1}$ and $n_0 = n_1$.
- Generate a prediction vector \boldsymbol{p} which overlaps with \boldsymbol{y} for a fraction of a_{full} .
- Sample a scoring vector s where each correct prediction is assigned a score $s_i \sim U_{0,0.5}$ and each incorrect prediction is assigned a score $s_i \sim U_{0.5,1}$.
- This score is optimal since all $s_i < 0.5$ correspond to a correct prediction, while all $s_i \ge 0.5$ correspond to an incorrect prediction.

UNIVERSITY OF