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Warmup: (Supervised) Machine Learning Pipeline
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Warmup: (Supervised) Machine Learning Pipeline
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Warmup: (Supervised) Machine Learning Pipeline
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Warmup: (Supervised) Machine Learning Pipeline
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Warmup: (Supervised) Machine Learning Pipeline
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Warmup: (Supervised) Machine Learning Pipeline
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Warmup: (Supervised) Machine Learning Pipeline
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Motivation: Input Sample Rejection
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Selective Classification (SC)

Selective classification adds a rejection class | via a gating mechanism.
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Selective Classification (SC)

Selective classification adds a rejection class | via a gating mechanism.

Goal: Derive a selection function g : X — R which, given an acceptance threshold T,
determines whether a model f : X — ) should predict on a data point x.

f(x) gx)<7
1 otherwise.

(f,8)(x) = {
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Selective Classification (SC)

Selective classification adds a rejection class | via a gating mechanism.

Goal: Derive a selection function g : X — R which, given an acceptance threshold T,
determines whether a model f : X — ) should predict on a data point x.

f(x) gx)<7
1 otherwise.

(f,8)(x) = {

The performance of a selective classifier (f, g) on a dataset D is assessed based on
® the coverage of (f,g), i.e. what fraction of points we predict on; and
e the selective accuracy of (f, g) on the points it accepts.

[{x: g(x) <7} {x: f(x) =y,8(x) < 7}|
f.g)= f g)=
courlr-) D el 8) = g0 < 7]
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SC via Neural Net Training Dynamics: Method Overview

Training stage

Training set
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SC via Neural Net Training Dynamics: Method Overview

Training stage

Training set Model training Intermediate models
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SC via Neural Net Training Dynamics: Method Overview (cont'd)

Testing stage

Intermediate models
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SC via Neural Net Training Dynamics: Method Overview (cont'd)

Testing stage

Test point Intermediate models
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SC via Neural Net Training Dynamics: Method Overview (cont'd)
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SC via Neural Net Training Dynamics: Method Overview (cont'd)
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SC via Neural Net Training Dynamics: Method Overview (cont'd)

Testing stage
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Differential Privacy

Definition: Differential Privacy

A randomized algorithm M satisfies (¢,0) differential privacy, if for any two
datasets D, D’ C D that differ in any one record and any set of outputs S the
following inequality holds:

P[M(D) € S] < &P [M(D') € S] + 4

.

The above DP bound is governed by two parameters:
® ¢ € R which specifies the privacy level; and

e § € [0, 1] which allows for a small violation of the bound.

The most widely used implementation for ensuring DP in deep neural nets is DP-SGD.
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Impacts of SC on DP Guarantees

Post-Processing

If a function ¢(x) satisfies (e, 0)-DP,
then for any deterministic or random-
ized function 1(-),1 o ¢(x) continues
to satisfy (e, 4)-DP.

Applicable to: Softmax Response (SR),
Monte-Carlo Dropout (MCDQ), Deep
Gamblers (DG), Self-Adaptive Training
(SAT), Selective Classification Training
Dynamics (SCTD)
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Impacts of SC on DP Guarantees

Post-Processing Advanced Sequential Composition

If a function ¢(x) satisfies (e, 0)-DP, If for a set {¢1(x),...,Pm(x)} each

then for any deterministic or random- 0i(x) satisfies (g,0)-DP, then releas-

ized function 1(-),1 o ¢(x) continues ing ¥(x) = (¢1(x),...,0m(x)) sat-

to satisfy (e,5)-DP. isfies ~ (v/Me, M§)-DP.

If the original (¢,0)-DP constraint

Applicable to: Softmax Response (SR), should be maintained, each function
Monte-Carlo Dropout (MCDQ), Deep needs to satisfy ~ (ﬁa %)‘DP-
Gamblers (DG), Self-Adaptive Training

(SAT), Selective Classification Training Applicable to: Deep Ensembles (DE),
Dynamics (SCTD) SelectiveNet (SN)
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Impacts of DP on SC Performance

We expect DP to impact SC beyond a loss in utility.

Sample points from a majority class and an outlier point x* from a minority class.
Train multiple differentially private models with € € {c0,7,3,1}.

Non-private model has best accuracy (and uncertainty) but is influenced by x*.

All models with e € {7,3,1} misclassify the outlier and the changing decision
boundary increases wrongful overconfidence as ¢ decreases.
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Evaluating SC under DP

® Default approach to quantify SC performance without accuracy bias is to align
different SC approaches/models at the same accuracy and evaluate

1
sauc(f,g) = / accc(f, g)dc acce(f, g) = acc-(f,g) for 7 st cov,(f,g) =c
0

® Accuracy-aligning can have unintended consequences on SC performance.
® FEarly-stopping is the de-facto way of ensuring accuracy-alignment.
e But: Training for less leads to expending less privacy budget.

® FEarly-stopping yields a DP model with greater privacy than the targeted €.

How do we quantify performance across SC methods and z-levels where
accuracy-alignment is not possible?
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Upper Bound On Selective Classification Performance

. .. |— ‘ ‘ ‘ —
Definition: Upper SC Perf. Bound 1.2 cov = ap

The upper bound for selective classi- 1h
fication performance for a fixed full-

1
0.8} ' 2
coverage accuracy agy € [0,1] and > :
a variable coverage level c € [0,1] is € 06 : .
given by o :
< 04} : ET
_ I 0<c<apmu :
acc(an, ¢) = e 0.2 " 2
¢ < c< 1 correct 1 incorrect
J ol " > |
. | | | | | | |
Optimal SC methods accept all correct 0 02 04 06 08 1 1.2
points first and incorrect points afterwards. Coverage
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Accuracy-Normalized Score For Selective Classification

Definition: Acc-normalized SC Score ) - ﬁ‘(afu”’c‘)

m—accc(f, g)

The accuracy-normalized selective
classification score s,,,(f,g) for a
selective classifier (f,g) with full-
coverage accuracy af, Is given by

o
[0}
[

Accuracy

1
SounlF, 8) = / (aee(ann, €) — acco(f, g))de

~ Z(m(afulh c) — acc.(f, g))

o
(@)}
[

4 0.4}

A good selective classifier should achieve a | | | | |
low score (S, (f,&) =~ 0), indicating 0O 02 04 06 08 1
closeness to the optimal bound acc(agy, ¢). Coverage
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Accuracy-Coverage Tradeoff Across Datasets & ¢ Levels
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Upper Bound Closeness for SCTD
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1.00 === 1.00 A === - _
& || \ 1.000 1.000
2 ] 1
g \ [ 0.95 0.975
0.95 1 975 4
v g 0.0072 \ 0975
T T T
1.0 4 1.00 A 10— =" 1.00
S E
(4 i 0.95 -
w3 097 0.75 0.9 0.0156
T T T T
1.0 | 1.00 1.0 1 1.0 |
I
=1
=5
L')é;? 0.9 1 0.75 1 0.9 1 0.9
0= 1.0 4 1.0 {========= 1.00
o2
— g
I 2 0.75 1
w3 .
< 0 0.0317 0.5 0.1521 08 - 0.0266
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Coverage Coverage Coverage Coverage
) £ o VECTOR UNIVERSITY OF
DP Models That Know What They Don’t Know 14 ¥ TR o 7 INSTITUTE CAMERIDGE




Accuracy-Normalized Selective Classification Performance

FashionMNIST CIFAR-10

€ =00 e=17 e=3 e=1 € = 00 e=7 e=3 e=1

SCTD 0.007 (£0.001) 0.021 (+0.001) 0.023 (+0.003) 0.032 (+0.002) 0.009 (+0.002) 0.098 (+0.001) 0.107 (+0.001) 0.152 (+0.001)

SVHN GTSRB

SCTD 0.003 (£0.001) 0.016 (+0.001) 0.018 (£0.002) 0.027 (+0.001) 0.011 (+£0.002) 0.005 (+0.000) 0.009 (£0.000) 0.062 (+0.001)

SCTD has the strongest performance, i.e. the lowest bound distance. ]
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Coverage Required For Non-Private Full-Coverage Accuracy

FashionMNIST CIFAR-10

e="7 e=3 e=1 e="7 e=3 e=1

SCTD 0.86 (40.01) 0.84 (+0.02) 0.73 (£0.01) 0.26 (+0.03) 0.20 (+0.03) 0.04 (£0.04)
SVHN GTSRB

SCTD  0.78 (40.01) 0.72 (+0.00) 0.59 (£0.02) 0.93 (£0.01) 0.83 (+0.03) 0.30 (+0.02)

SCTD retains the largest amount of coverage.
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Conclusion

® Analyzed how SC impacts DP guarantees and how DP impacts SC performance.
® Introduced a novel score to disentangle SC performance from baseline utility.
e SC performance degrades with stronger privacy (i.e. as ¢ — 0).

® SCTD works best to quantify uncertainty under DP.

N w . Y&
Stephan Anvith Abhradeep

Nicolas

Training Private Models That Know What They Don’t Know
https://arxiv.org/abs/2305.18393
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The Sum Score sym
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The Sum Score syum
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The Sum Score sym
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The Sum Score sgm

1. Denote L = fr(x), i.e. the label
our final model predicts.

Vi

2. If 3t s.t a; = 1, compute

Ssum = E Vidt

else accept x with prediction L.

3. If ssum < 7 accept x with
prediction L, else reject (L).

Checkpoints Checkpoints
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The SCTD Algorithm

Algorithm 0: SCTD

Require: Checkpointed model sequence {fi, ..., fr}, query point x, weighting
parameter k € [0, 00).
Compute prediction of last model: L < fr(x)
Compute disagreement and weighting of intermediate predictions:
for t € [T] do
if f;(x) =L then a; < O else a; + 1
Ve 1—(£)k
end for
Compute sum score: Sgym <— D, 3Vt
if ssum < 7 then accept f(x) = L else reject with f(x) = L

O N a R wn s
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Individual SVHN Example

Prediction: 9 — Label: 9
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Individual SVHN Example

Prediction: 8 — Label: 8

Prediction: 9 — Label: 9 Prediction: 9 — Label: 3
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SC Performance Over Accuracy-Coverage Curve

Dataset SR SAT DE SCTD DE+SCTD
CIFAR-10 0.971 0.978 0.980 0.980 0.981
CIFAR-100 0.895 0.900 0.909 0.909 0.912

Food101 0.935 0.939 0.945 0.946 0.947

StanfordCars 0.920 0.927 0.930 0.931 0.934

® SCTD offers comparable performance to DE.
® Combining DE with SCTD (DE+SCTD) delivers new SOTA performance.
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Score Distributions Of Correct And Incorrect Points

CIFAR-10 CIFAR-100 Food101 StanfordCars
20.05 - [ correct i
z incorrect | 0.02 0.01 1 0.025
a
0.00 — r r 0.00 4+ S r r 0.00 r r 0.000 r T
0 200 400 0 200 400 0 500 0 200
Ssum

Ssum Ssum Ssum

e Correct predictions concentrate at 0 (prediction stability).
® Incorrect predictions spread over a wide score range (prediction instability).
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Monitoring E[] and VT[]

¢;: correct test points ~——— i;: incorrect test points ——— p;: training points
CIFAR-10 CIFAR-100 Food101 StanfordCars
14 14 1
. b‘\
04 : 0 . 04 . . 0, .
0.2 1 0.2 1 0.2 1 0.2 1
; O.l -
0.0 4 r T T 0.0 L7 T T 0.0 T
0 1000 0 1000 0 1000 2000 0 500
Checkpoints Checkpoints Checkpoints Checkpoints

® Patterns for optimized points overlap with correctly classified test points.
e Correctly classified points have both E[c;] and V[c;] quickly decreasing to 0.
® Incorrectly classified points exhibit large expectations and variances.
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Performance of sqax VS Ssum

CIFAR-10 CIFAR-100 Food101 StanfordCars
1.00 1.0 1 1.0 1 1.0

-

g
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< max 0.8 0.8 -

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Coverage Coverage Coverage Coverage

Figure: Comparing smax and sy,m performance. It is evident that sy, effectively denoises

smax-
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Ablation On Number of Checkpoints

full 200 — 100 — 50 — 25 — 10
CIFAR-10 CIFAR-100 Food101 StanfordCars
1.00 1.0 - 1.0 1.0 n

-

g

§ 0.95 0.8

< 0.8 0.8

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Coverage Coverage Coverage Coverage

Figure: Coverage/error trade-off of SCTD(s,.g) for varying total number of checkpoints.
As the checkpointing resolution decreases, accuracy at low coverage increasingly degrades,
thereby showing that a detailed characterization of the training dynamics is helpful to attain

high target accuracy.
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Ablation Over k

— 1 2 — 3 — 5 — 10
CIFAR-10 CIFAR-100 Food101 StanfordCars

1.00 1.0 1.0 9 1.0
-
g
§ 0.95 1 0.8
< 0.8 0.8

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Coverage Coverage Coverage Coverage

Figure: Coverage/error trade-off of SCTD(s.g, k) for varying checkpoint weighting k as
used in v;. We observe strong performance for k € [2,5] across datasets.
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Incorporating e; And v; Into sgunm

CIFAR-10 CIFAR-100 Food101 StanfordCars
1.00 I 1.0 1.0 A 1.0
0.95 4 === simplified 0.8
estimated ’ 0.8 084
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure: Coverage/error trade-off when incorporating e; and v; into syax and sg,m. We see
that our simplifying assumptions match the performance attained from empirical estimation of
e and v;.
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Detectability of OOD and Adversarial Examples

CIFAR10 - OOD

CIFAR10 - ADV

CIFAR100 - OOD

CIFAR100 - ADV

= [ ood % 0.05 4 [ adv = 0.05 4 [ ood = [ adv
Z 5 ] . G . 7 ) . )
é 0.025 A~ test é test g test é 0.05 test
: AT\ | ¢ S ol Ll ® o
0.000 T T T 0.00 f T T 0.00 1 T T 0.00 T T T
- 0 25 50 75 —25 0 25 50 5 —25 0 25 50 75 —25 0 25 50 75
P Score © Score B Score B Score
£14 &1 21 £14 =
@ AUC 0.896 o AUC 0.905 o AUC 0.820 @ -
£ . £ . £ . £ -
o - o - [ L- o - AUC 0.786
N § > -
£0+y . T £ 0y . T g0y : . 20y . .
& 0.0 0.5 1.0 = 0.0 0.5 1.0 = 0.0 0.5 1.0 s 0.0 0.5 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate

Figure: Performance of SCTD(ssym) on out-of-distribution (OOD) and adversarial sample
detection on CIFAR-10 and CIFAR-100. The first row shows the score distribution of the
in-distribution test set vs the SVHN OOD test set or a set consisting of adversarial samples
generated via a PGD attack in the final model. The second row shows the effectiveness of a
thresholding mechanism by computing the area under the ROC curve.
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DP-SGD
Algorithm 1: DP-SGD

Require: Training dataset D, loss function ¢, learning rate 1, noise multiplier o, sampling rate q,
clipping norm c, iterations T.
1: Initialize 6o
2: for t € [T] do
3: 1. Per-Sample Gradient Computation
Sample B; with per-point prob. g from D
for i € B; do
g:(xi) < Vo (0, xi)
end for
2. Gradient Clipping
9:  &:(x) + gt(xi)/ max (1, 7“&(2’)”2)
10: 3. Noise Addition
110 & gy (X 8:(x) + N(0, (o)D)
12: 0t+1 <— et — 77§t
13: end for
14: Output 7, privacy cost (e,d) computed via a privacy accounting procedure
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Composition-Based Deep Ensembles VS Partitioned Deep Ensembles
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Class Imbalance Results on CIFAR-10
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Upper Bound Reachability

mmmm Upper Accuracy-Coverage Bound Achieved Accuracy-Coverage Tradeoff
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® Assume a binary classif. setting with label vector y € {0,1}™%™ and ny = n;.

® Generate a prediction vector p which overlaps with y for a fraction of ag.

® Sample a scoring vector s where each correct prediction is assigned a score
si ~ U, 0.5 and each incorrect prediction is assigned a score s; ~ Up5 1.

® This score is optimal since all s; < 0.5 correspond to a correct prediction, while all
si > 0.5 correspond to an incorrect prediction.
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