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1 INTRODUCTION
Gaussian mixture models (GMMs) are used in a wide variety of
application areas, such as data mining, pattern recognition, machine
learning, and statistical analysis.

Traditionally, we assume that all the data points we are using in
order to learning GMMs are present and in memory at the time of
learning. However, in some cases, one might want to learn a GMM
incrementally as the data arrives, which is commonly referred to
as online learning.

2 APPORACH
The general idea we want to follow for learning online GMMs
e�ciently is outlined as follows:

2.1 GMM basics
Assume that we have learned an incremental GMM from the incom-
ing data points until time t . Then the corresponding probability
distribution is given as

P t (x) =

∑k
i=1w

t
iN(x |µ

t
i , Σ

t
i )∑k

i=1w
t
i

. (1)

In this setting, k denotes the number of mixture components,wt
i de-

notes the mixture weight for component i at time t , andN(x |µti , Σ
t
i )

denotes the i-th mixture component at time t with mean µti and
covariance Σti .

2.2 Model growing
Now the question is raised how to handle a new incoming data
point arriving at t+1. Here we propose to trivially integrate the new
data point into the existing model structure by adding this point as
a new Gaussian component N(x |µt+1, Σt+1) weighted with wt+1.
The full probability distribution at time t + 1 is given as

P t+1(x) =

∑k
i=1[w

t
iN(x |µ

t
i , Σ

t
i )] +w

t+1N(x |µt+1, Σt+1)∑k
i=1[w

t
i ] +w

t+1
. (2)

This new Gaussian component will be centered on the data point
itself and will receive a weighted prior covariance. Hence, each
Gaussian is governed by a slightly di�erent covariance matrix as
opposed to [? ]. The covariance matrix of the i-th component is
expressed as

Σi =
wi Σ̃i +wpΣp

wi +wp
, (3)

where Σ̃i corresponds to the sample covariance, wp corresponds to
the prior weight given to the Gaussian component, and Σp corre-
sponds to the prior covariance given to the Gaussian component.
Note that we will assume that Σp is a scaled identity matrix, hence
Σp = σpI with σp being the prior variance. For a newly added data
point at t + 1, we set wi = 1 whereas Σ̃i is still unknown. The
resulting Gaussian component is therefore governed by µt+1 = x

and Σt+1 =
wpΣp
1+wp

and weighted by wt+1 = 1. Hence, the updated

model is given as follows:

P t+1(x) =

∑k
i=1[w

t
iN(x |µ

t
i , Σ

t
i )] +N(x |x ,

wpΣp
1+wp

)∑k
i=1[w

t
i ] + 1

. (4)

A common choice for the prior weight would be wp = 1, which
means that the prior is treated with the same weight as a single
data point. Σp is considered a hyper-parameter one has to tune.

Equation (3) corresponds to the maximum a posteriori (MAP) so-
lution for the covariance of a Gaussian distribution with an inverse
Wishart distribution as the prior distribution. The inverse Wishart
distribution of a q × q matrix Σ is de�ned as

W−1(Σ|ν ,Ψ) ≡
|Ψ|

ν
2

2
νp
2 Γq (

ν
2 )
|Σ|−

ν+p+1
2 e−

1
2 tr(ΨΣ−1), (5)

where Γq is the multivariate gamma function. The posterior dis-
tribution for the covariance Σi given a set of data points {d} now
reads

P(Σi |{d}) ∝ W
−1(Σi |ν ,Ψ)

∏
t
N(dt |µi , Σi ). (6)

With µi =
1
N

∑
t
dt and N being the number of datapoints the

argmax of the posterior distribution yields

argmax P(Σi |{d}) =
Ψ +

∑
t
(dt − µi ) (dt − µi )

†

ν + p + 1 + N
, (7)

where † denotes complex conjugation and transposition. This result
can be easily related to (3) by identifying N with wi , ν + p + 1 with
wp , and Ψ with wpΣp .

2.3 Model reduction
Since we are not interested in a model in which all data points
are represented by a separate Gaussian distribution, we want to
simplify the model as soon as possible in order to reduce the model
complexity and to capture the (latent) structure of the data. There-
fore, it is advised to perform simpli�cation checks after each newly
observed data point. During these tests, each Gaussian component
is compared with every other Gaussian component to determine
the level of similarity between the respective Gaussians. If a given
similarity threshold is exceeded (minimal overlap omin), the two
Gaussians are merged into a new Gaussian component.

2.3.1 Similarity check. In contrast to prior works, which pro-
poses a similarity measure based on the Kolmogorov-Smirno� test,
we propose two distance measures based on the scalar product of
two Gaussians Ni = N(x |µi , Σi ) and Nj = N(x |µ j , Σj ), which we
de�ne as

〈Ni ,Nj 〉 =

∫
NiNjdx . (8)

The �rst distance measure is given as

s1(Ni ,Nj ) = ln
(

〈Ni ,Nj 〉√
〈Ni ,Ni 〉〈Nj ,Nj 〉

)
(9)

while the second approach is given as

s2(Ni ,Nj ) = ln
(
〈
√
Ni ,

√
Nj 〉

)
. (10)
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Both similarity measures (and hence also omin) are restricted to
negative values including 0, formally s1, s2,omin ∈ (−∞, 0]. Note
that omin = 0 enforces the two Gaussians to be exactly the same,
which heavily reduces the number of merges and the model’s �exi-
bility. Increasingly negative values of omin allow for more relaxed
scenarios, meaning that merges will occur earlier and more often.
Consequently, a model with omin close to 0 tends to over�t the data,
while increasingly negative values will result in under�tting.

2.3.2 Merging. As already outlined before, we intend to merge
the two GaussiansNi andNj (with wi and w j being the respective
weighting factors in the mixture model) in case they exceed the min-
imal overlap omin. Concretely, this means removing both Gaussians
from our model and adding a new single GaussianNm = N(x |µ, Σ)
with weight w according to the following set of formulas:

w = wi +w j (11)

µ =
1
w
(wiµi +w jµ j ) (12)

Σ =
wi

w +wp
(Σ̃i + (µi − µ)(µi − µ)

T ) + (13)

+
w j

w +wp
(Σ̃j + (µ j − µ)(µ j − µ)

T ) +
wpΣp

w +wp

These merging formulas are again similar to [? ]. The only adap-
tation we need to make is to account for the correct weighting
of the prior variance as part of the new covariance computation.
Note that Σ̃i =

Σi (wi+wp )−wpΣp
wi

, which follows from Equation (3).
This speci�c weighting of the covariance of the new Gaussian is
needed to also re�ect the MAP solution for the covariance matrix
of a multivariate Gaussian.

However, we are not done once two Gaussians are successfully
merged. Since we have added a new Gaussian to our model, it is
required that we re-initiate the similarity checking procedure to
determine whether some new merging possibilities have emerged
after the previous merge. In case no other two Gaussians are similar
enough for a merge, we have arrived at a stable model for the
observed data points.

while datapoints arriving do
Add new Gaussian component to model centered on

datapoint with prior covariance;
while merge still possible do

Check overlap between two Gaussian components;
if signi�cant overlap detected then

Merge the two Gaussian components;
end

end
end

Algorithm 1: High-level algorithm outline

2.4 Model selection
While the proposed model should be suited for online learning, we
are still required to tune two hyper-parameters, namely σp and
omin. Model selection is therefore performed on the entire data set
using a �xed set of (σ lp ,olmin) for every iteration l . The performance
is assessed through the Bayesian information criterion (BIC), which
is given as

BIC = ln(N )k − 2 ln(L̂), (14)
where k denotes the number of free parameters in our model and L̂
the maximized likelihood function.

As part of the model selection process, we aim at minimizing
the BIC. This is performed using a discretized version of gradient
descent on the BIC function by adapting (σ lp ,olmin) repeatedly. The
two parameters are updated as follows:

σ l+1p = σ lpσ
a
p or σ l+1p =

σ lp

σap
(15)

ol+1min = omin + o
a
min or ol+1min = o

l
min − o

a
min (16)

In each iteration we �rst pick one of the two parameters alternately,
increase and decrease the respective parameter by an adaption
factor (or summand) and evaluate the BIC for both the increase
and the decrease. The value which leads to a lower BIC result is
then used for the subsequent iterations. In case the BIC does no
longer improve, we have found our optimal set of hyper-parameters
(σLp ,o

L
min). Note that when optimizing the prior variance, the adap-

tion is applied multiplicatively through σap , while when optimizing
the minimal overlap, the adaption is applied additively oamin. While
these two parameters can be chosen more freely, we will use σap = 2
and oamin = 0.5 for our experiments. Also, we choose σ 0

p = 1 and
o0min = −1 as the initial values for the optimization procedure.

3 EXPERIMENTS
3.1 Data sets
To evaluate the performance of our estimation procedure, we used
four di�erent arti�cially generated datasets: single Gaussian, four
(clearly separated) Gaussians, the banana, and the swiss roll.

3.2 Plot explanations
The following two subsections summarize our results obtained
from a few test runs by using the described data sets. Each section
features a few tables whose plots we will brie�y explain here.

The �rst two rows of each table are composed of depictions of
the iterative evolution of the GMM as more and more data points
are added. Note that these plots are representations of the model
with the optimal set of hyper-parameters (σLp ,oLmin).

The third row contains three line graphs which further show
key information in the evolution of the model.

(1) The �rst line plot shows the discrete gradient descent op-
timization procedure on the BIC as described in Section
2.4.the red dot in the graph represents the optimal combi-
nation.

(2) The second line plot shows the evolution of the number
of Gaussian components used in the mixture as the data
points are added. Note again that this plot shows the evo-
lution for the optimal hyper-parameter setting. Therefore,
this plot gives us a more continuous interpretation of the
plots shown in the �rst two rows of the table.

(3) The third line plot shows the evolution of the number of
Gaussian components over the total number of optimiza-
tion iterations. Hence, this plot gives us a feeling of how
the number of Gaussian components would look like for
other, worse settings of (σLp ,oLmin).

3.3 First distance measure (s1)
See Tables 1 to 16.

3.4 Second distance measure (s2)
See Tables 17 to 32.
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Table 1: Single Gaussian in 2 dimensions with 100 data points
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Table 2: Single Gaussian in 2 dimensions with 1000 data points
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Table 3: Single Gaussian in 10 dimensions with 100 data points
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Table 4: Single Gaussian in 10 dimensions with 1000 data points
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Table 5: Four Gaussians in 2 dimensions with 100 data points
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Table 6: Four Gaussians in 2 dimensions with 1000 data points
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Table 7: Four Gaussian in 10 dimensions with 100 data points
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Table 8: Four Gaussians in 10 dimensions with 1000 data points
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Table 9: Banana in 2 dimensions with 100 data points
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Table 10: Banana in 2 dimensions with 1000 data points
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Table 11: Banana in 10 dimensions with 100 data points
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Table 12: Banana in 10 dimensions with 1000 data points
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Table 13: Swiss roll in 2 dimensions with 100 data points
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Table 14: Swiss roll in 2 dimensions with 1000 data points
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Table 15: Swiss roll in 10 dimensions with 100 data points
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Table 16: Swiss roll in 10 dimensions with 1000 data points
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Table 17: Single Gaussian in 2 dimensions with 100 data points
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Table 18: Single Gaussian in 2 dimensions with 1000 data points

11



N = 10 N = 20 N = 30 N = 40 N = 50

N = 60 N = 70 N = 80 N = 90 N = 100

1 2 3 4 5 6 7 8
prior variance

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

m
in

im
al

ov
er

la
p

0 20 40 60 80 100
# of data points

1.0

1.2

1.4

1.6

1.8

2.0

#
of

G
au

ss
ia

n
co

m
p

on
en

ts

0 2 4 6
# of optimization iterations

0

20

40

60

#
of

G
au

ss
ia

n
co

m
p

on
en

ts

Table 19: Single Gaussian in 10 dimensions with 100 data points
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Table 20: Single Gaussian in 10 dimensions with 1000 data points
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Table 21: Four Gaussians in 2 dimensions with 100 data points
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Table 22: Four Gaussians in 2 dimensions with 1000 data points
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Table 23: Four Gaussian in 10 dimensions with 100 data points

N = 100 N = 200 N = 300 N = 400 N = 500

N = 600 N = 700 N = 800 N = 900 N = 1000

1.0 1.5 2.0 2.5 3.0 3.5 4.0
prior variance

−2.4

−2.2

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

m
in

im
al

ov
er

la
p

0 200 400 600 800 1000
# of data points

1

2

3

4

5

6

7

#
of

G
au

ss
ia

n
co

m
p

on
en

ts

0 2 4 6
# of optimization iterations

0

100

200

300

#
of

G
au

ss
ia

n
co

m
p

on
en

ts

Table 24: Four Gaussians in 10 dimensions with 1000 data points
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Table 25: Banana in 2 dimensions with 100 data points
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Table 26: Banana in 2 dimensions with 1000 data points
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Table 27: Banana in 10 dimensions with 100 data points
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Table 28: Banana in 10 dimensions with 1000 data points
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Table 29: Swiss roll in 2 dimensions with 100 data points

N = 100 N = 200 N = 300 N = 400 N = 500

N = 600 N = 700 N = 800 N = 900 N = 1000

0.2 0.4 0.6 0.8 1.0
prior variance

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

m
in

im
al

ov
er

la
p

0 200 400 600 800 1000
# of data points

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

#
of

G
au

ss
ia

n
co

m
p

on
en

ts

0 2 4 6
# of optimization iterations

2.5

5.0

7.5

10.0

12.5

15.0

#
of

G
au

ss
ia

n
co

m
p

on
en

ts

Table 30: Swiss roll in 2 dimensions with 1000 data points
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Table 31: Swiss roll in 10 dimensions with 100 data points
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Table 32: Swiss roll in 10 dimensions with 1000 data points
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Our results with distance measure s2

Table 33: Comparison of our model against competitor
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