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Motivation & Overview



Motivation

® The reliable functioning of software depends crucially on tests.
® Despite their power, ML models are sensitive to shifts in the data distribution.
® ML pipelines rarely inspect incoming data for signs of distribution shift.

® Best practices for testing equivalence of the source distribution p and the target
distribution g in real-life, high-dim. data settings have not yet been established.

e Existing solutions to addressing covariate shift
q(x,y) = q(x)p(y|x)

or label shift
q(x,y) = q(y)p(x|y)

often rely on strict preconditions, producing wrong predictions if not met.
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Shift Detection Overview

Faced with distribution shift, our goals are three-fold:
® detect when distribution shift occurs from as few examples as possible;

® characterize the shift (e.g. by identifying those samples from the test set that
appear over-represented in the target data); and

® provide some guidance on whether the shift is harmful or not.

Combined Test Statistic
& Shift Detection

A

Two-Sample Test(s)

e
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xtarget
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Methods



Our Framework

Given labeled data (x1,y1), .., (Xn, ¥n) ~ p and unlabeled data xi, ..., x;, ~ g, our task
is to determine whether p(x) equals g(x’):

Ho:p(x)=q(x’) vs  Ha:p(x)# q(x).

We explore the following design choices:
® what representation to run the test on;
® which two-sample test to run;

® when the representation is multidimensional; whether to run a single
multivariate test or multiple univariate two-sample tests; and

® how to combine their results.
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Dimensionality Reduction Techniques:

NoRed & PCA

No Reduction (NoRed O):

O O
O O
o—0
O O
® To justify the use of any DR

technique, our default baseline is to
run tests on the original raw features.

Principal Components Analysis (PCA O):

® Find an optimal orthogonal transf.
matrix such that points are linearly
uncorrelated after transf.
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Dimensionality Reduction Techniques: SRP & AE

Sparse Random Projection (SRP O): Autoencoders (TAE <> and ):

+y/% with prob. - .
R,-j =<0 ‘ with prob. i— % ® Encoder ¢: X' = L
~ /T with prob. 1 ® Decoder ¢ : L — X
K T 2v
. 2
with v= L ¢, 9 = argming [ X — (¥ 0 @) X]|
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Dimensionality Reduction Techniques

- BBSD & Classif

Label Classifiers ( and BBSDh >):

C-many
classes

® Label classifier with softmax outputs
( ) or hard-thresholded
predictions (BBSDh [>).

Domain Classifier (Classif X):

source

® Explicitly train a domain classifier to
discriminate between data from source
and target domains.
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Statistical Hypothesis Testing: Maximum Mean Discrepancy (MMD)

® Popular kernel-based technique for ® Empirical estimate:
multivariate two-sample testing. R
L . . 1
D h . h 2__ - -
istinguis tvv.o distrib. based on their MMD = (=T ZZK(XHXJ)
mean embeddings pp and pg in a i—1 jAi
reproducing kernel Hilbert space F: 1 n n
) T K(X7, x7)
MMD(F, p, q) = |[p — mqllF n(n—1) i=1 j#i
2 m n
/
- nlxix)
9 P i=1 j=1
D
q S — 2 lxa—x|?
o Kernel: r(xy,xy) = e olM™x
® Used with NoRed O, PCA O, SRP O,
TAE <, , and
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Statistical Hypothesis Testing: Kolmogorov-Smirnov + Bonferroni

e Test each of the K dimensions ® Multiple hypothesis testing: we must
separately (instead of jointly) using subsequently combine the p-values
the Kolmogorov-Smirnov (KS) test. from the K-many test.

® Largest difference S of the cumulative ® Problem: We cannot make strong
density functions over all values z: assumptions about the (in)dependence

among the tests.
5= >up |Fp(2) = Fq(2)] e Solution: Bonferroni correction:

® Does not assume (in)dependence.
® Bounds the family-wise error rate,
) i.e. it is a conservative aggregation.
® Rejects Hy if pmin < %.
® Used with NoRed O, PCA O, SRP O,
TAE <, , and

F

an
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Statistical Hypothesis Testing: Chi-Squared Test

® Evaluate whether the freq. distr. of
certain events observed in a sample is
consistent with a particular theo. distr.

e Difference can be calculated as

2 ¢
X =33 (Oj ;UEU)Q

i=1 j=1

with observed counts O;; and expected
counts Ejj = Nsympiepej With
® Pie =N =20 ﬁ and

sum
n.j _ r I‘I,'j

¢ p.J = m - Z’:l Neym *
e Under Hy, X2 ~ X%—l'

Sample Cat1 Cat C >
p Np1 T Npc Npe
q Ng1 s Ngc Nge
Z Ne1 T NeC Nsum
Rejection

e Used with BBSDh >.
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Statistical Hypothesis Testing: Binomial Test

e Compare difference classifier accuracy
(acc) on held-out data to random
chance via a binomial test.

Hp:acc=05 vs Hp:acc>0.5

® Under Hy, the acc follows a binomial
distribution

acc ~v Bin(Nho|d, 05)

where Nygq corresponds to the
number of held-out samples.

o| Rejection

@)

o )
©) o

oo Sececescescscee)

® Used with Classif X.
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Obtaining Most Anomalous Samples

® Recall: our detection framework does not detect outliers but rather aims at
capturing top-level shift dynamics.

® We can not decide whether any given sample is in- or out-of-distribution.
® But: we can harness domain assignments from the domain classifier.

® |t is easy to identify the exemplars which the domain classifier was most confident
in assigning to the target domain.

® Other shift detectors compare entire distributions against each other.

® |dentification of samples which if removed would lead to a large increase in the
overall p-value was not successful.
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Determining the Malignancy of a Shift

Distribution shifts can cause arbitrarily severe degradation in performance.

In practice distributions shift constantly and often these changes are benign.

Goal: distinguishing malignant shifts from benign shifts.

Problem: although prediction quality can be assessed easily on source data, we are
not able compute the target error directly without labels.

Heuristic methods for approximating the target performance:

® Difference classifier assignments: assess black-box model's accuracy on the
labeled top anomalous samples (implicit shift characterization).

®* Domain expert: Get hints on the target accuracy by evaluating the classifier on
held-out source data that has been explicitly perturbed by a function determined by
a domain expert.
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Experiments



Experimental Setup

e Core experiments: synthetic shifts on MNIST and CIFAR-10 image datasets.

® Autoencoders: convolutional architecture with 3 convolutional layers.
e BBSD and Classif: ResNet-18 architecture.

¢ Network training (TAE <, , BBSDh >, Classif X): SGD with
momentum in batches of 128 examples over 200 epochs with early stopping.

¢ Dimensionality reduction to K = 32 (PCA O, SRP ©, , and TAE <),
C =10 ( ), and 1 (BBSDh > and Classif x).

® Evaluate shift detection at a significance level of o = 0.05.
e Shift detection performance is averaged over a total of 5 random splits.

® Randomly split the data into training, validation, and test sets and then apply a
particular shift to the test set only.

® Evaluate the models with various amounts of samples from the test set
s € {10, 20, 50, 100, 200, 500, 1000, 10000}.
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Shift Simulation

For each shift type (as appropriate) we explored three levels of shift intensity and
various percentages of affected data ¢ € {0.1,0.5,1.0}.

® Adversarial (adv): We turn a fraction § of samples into adversarial samples via FGSM;

¢ Knock-out (ko): We remove a fraction ¢ of samples from class 0, creating class
imbalance;

® Gaussian noise (gn): We corrupt covariates of a fraction § of test set samples by
Gaussian noise with standard deviation o € {1,10,100} (denoted s_gn, m_gn, and /_gn);

® Image (img): We also explore more natural shifts to images, modifying a fraction ¢ of
images with combinations of random rotations {10, 40,90}, (x, y)-axis-translation
percentages {0.05,0.2,0.4}, as well as zoom-in percentages {0.1,0.2,0.4} (denoted
s_img, m_img, and l_img);

* Image + knock-out (m_img+ko): We apply a fixed medium image shift with §; = 0.5
and a variable knock-out shift §;
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Shift Simulation (contd.)

® Only-zero + image (oz+m_img): Here, we only include images from class 0 in
combination with a variable medium image shift affecting only a fraction § of the data;

¢ Original splits: We evaluate our detectors on the original source/target splits provided by
the creators of MNIST, CIFAR-10, Fashion MNIST, and SVHN datasets (assumed to be
ii.d.);

® Real shift datasets:

® Domain adaptation from MNIST (source) to USPS (target).
® COIL-100 dataset where images between 0° and 175° are sampled by the source and
images between 180° and 355° are sampled by the target distribution.
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Dimensionality Reduction Methods Comparison

Table: Detection accuracy of different dimensionality reduction techniques across all simulated
shifts on MNIST and CIFAR-10. Green bold entries indicate the best DR method at a given
sample size, red italic the worst. Underlined entries indicate accuracy values > 0.5.

Number of samples from test

Test DR
10 20 50 100 200 500 1,000 10,000
NoRed 0.03 0.15 0.26 0.36 0.41 0.47 0.54 0.72
2 PCA 0.11 0.15 0.30 0.36 0.41 0.46 0.54 0.63
8 SRP 0.15 0.15 0.23 0.27 0.34 0.42 0.55 0.68
s UAE 0.12 0.16 0.27 0.33 0.41 0.49 0.56 0.77
5 TAE 0.18 0.23 0.31 0.38 0.43 0.47 0.55 0.69
BBSDs 0.19 0.28 0.47 0.47 0.51 0.65 0.70 0.79
X2 BBSDh 0.03 0.07 0.12 0.22 0.22 0.40 0.46 0.57
Bin Classif 0.01 0.03 0.11 0.21 0.28 0.42 0.51 0.67
" NoRed 0.14 0.15 0.22 0.28 0.32 0.44 0.55 -
? PCA 0.15 0.18 0.33 0.38 0.40 0.46 0.55 -
= SRP 0.12 0.18 0.23 0.31 0.31 0.44 0.54 -
2 UAE 0.20 0.27 0.40 0.43 0.45 0.53 0.61 -
E] TAE 0.18 0.26 0.37 0.38 0.45 0.52 0.59 -
= BBSDs 0.16 0.20 0.25 0.35 0.35 0.47 0.50 -
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Shift Type Comparison

Table: Detection accuracy of different shifts on MNIST and CIFAR-10 using the

best-performing DR technique (BBSDs). Green bold shifts are identified as harmless, red italic
shifts as harmful.

Number of samples from test

Test Shift
10 20 50 100 200 500 1,000 10,000
s.gn 0.00 0.00 0.03 0.03 0.07 0.10 0.10 0.10
» m_gn 0.00 0.00 0.10 0.13 0.13 0.13 0.23 0.37
2 lgn 0.17 0.27 0.53 0.63 0.67 0.83 0.87 1.00
Q s.img 0.00 0.00 0.23 0.30 0.40 0.63 0.70 0.93
o m_img 0.30 0.37 0.60 0.67 0.70 0.80 0.90 1.00
= l.img 0.30 0.50 0.70 0.70 0.77 0.87 0.97 1.00
s adv 0.13 0.27 0.40 0.43 0.53 077 0.83 0.90
£ ko 0.00 0.00 0.07 0.07 0.07 0.33 0.40 0.70
> m.img-+ko 013 0.40 0.87 0.93 0.90 1.00 100 1.00
oz+m-img 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Individual Result: Medium Image Shift on MNIST

10! 10 10°
Number of samples from test

(a) Test w/ 10%.

10t

LOO e

0.95

Accuracy

0.90

10! 10° 10°
Number of samples from test

(e) Acc. w/ 10%.

104

10t 10° 10° 10!
Number of samples from test

(b) Test w/ 50%.

e ———
508
H .
<06
0.4
10t 10° 10° 10!

Number of samples from test

(f) Acc. w/ 50%.

Accuracy

107 ¢ +— NoRed
\ —e— PCA
—— SRP
UAE
—— TAE
BBSDs
—— BBSDh
—=— Classif

10 10° 10° 10
Number of samples from test

(c) Test w/ 100%.

1] o—+—+ o o = .
0.8
0.6
* Classif
0.4
0.2 =
10! 10% 10° 10!

Number of samples from test

(g) Acc. w/ 100%.

(d) Top different.

(h) Top similar.
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Individual Result: Angle-Partitioning on COIL-100

10! 10° 10°

1.007 =

Accuracy

0.98

0.97

Number of samples from test

(a) Test random.

TN\

10! 10° 10°
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(d) Acc. random.
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0.8 —e— SRP
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—— TAE
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—— BBSDh
0.4 *— Classif

—

10! 10° 10°
Number of samples from test
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-

7
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—-—

— q
4= Classif

0.94

10! 10° 10°
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Individual Result: Original Split on MNIST

10! 10° 10° 10!
Number of samples from test

(a) Test random.

1.000
0.998

).996 s

Accuracy
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10 10° 10° 10!
Number of samples from test

(d) Acc. random.
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TAE
BBSDs
BBSDh
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10! 10° 10° 10!
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Conclusion



Summary & Next Steps

Summary
® Black-box shift detection with soft predictions works well across many scenarios.

® Aggregated univariate tests performed separately on each latent dimension provide
similar performance to multivariate two-sample tests, despite heavy correction.

® Harnessing predictions made by a domain-discriminating classifier enables
characterization of the shift's nature and malignancy.

Potential future extensions

® Shift detection for online data by accounting for and exploiting the high degree of
correlation between adjacent time steps.

® Apply our framework to other machine learning domains such as NLP or graphs.
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Conference Submissions

DebugML @ ICLR 2019 (presented)

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

FAILING LOUDLY: AN EMPIRICAL STUDY OF
METHODS FOR DETECTING DATASET SHIFT
Stephan Rabanser", Stephan Giinnemann

Technical University of Munich, Germany
{rabanser, guennemann}@in.tum.de

Zachary C. Lipton
Carnegic Mellon University, Pitisburgh, PA
zlipton@cmu.edu

ABSTRACT

We might hope that when faced with unexpected inputs, well-designed software
systems would fire off warnings. Machine learning (ML) systems, however, which
depend strongly on properties of their inputs (e.g. the i.i.d. assumption), tend to
fail silently. This paper explores the problem of building ML systems that fail
loudly, investigating methods for detecting dataset shift and identifying exemplars
that most typify the shift. We focus on several datasets and various perturbations
to both covariates and label distributions with varying magnitudes and fractions of
data affected. Interestingly, we show that while classifier-based methods perform
well in high-data settings, they perform poorly in low-data settings. Morcover,
across the dataset hat we explore, a two-sample-testing-based approach,
using pre-trained classifiers for dimensionality reduction performs best.

https://debug-ml-iclr2019.github.io/cameraready/DebugML-19_
paper_20.pdf

NeurlPS 2019 (to be presented)

Failing Loudly: An Empirical Study of Methods
for Detecting Dataset Shift

Stephan Rabanser; Stephan Giinnemann
Technical University of Munich
{rabanser, guennemann}@in. tun.de

Zachary C. Lipton
Camegic Mellon University
zliptonQcmu. edu

Abstract

We might hope that when faced with unexpected inputs, well-designed software
systems would fire off warnings. Machine learning (ML) systems, however, which
depend strongly on properties of their inputs (e.g. the i assumption), tend to
fail silently. This paper explores the problem of building ML systems that fail
loudly, investigating methods for detecting dataset shift, identifying exemplars
that most typify the shift, and quantifying shift malignancy. We focus on several
datasets and various perturbations to both covariates and label distributions with
varying magnitudes and fractions of data affected. Interestingly, we show that
across the dataset shifts that we explore, a two-sample-testing-based approach,
using pre-trained classifiers for dimensionality reduction, performs best. More-
over, we that d in-discrimina tend to be helpful
for izing shifts itati and if they are harmful.

https://arxiv.org/abs/1810.11953
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Multiple Hypothesis Testing Correction

Family-Wise Error Rate (FWER)

The most stringent control is given by procedures controlling the FWER, which limits
the probability of making at least one false positive, formally

FWER = P(V > 1) < o

where V is the total amount of false discoveries.

False Discovery Rate (FDR)
A less stringent but more powerful alternative to the FWER is the FDR, which limits

the expected proportion of false positives, formally

%4
FDR:E[M] <«

where M is the total amount of discoveries.
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Shifts

Covariate Shift

[p(x) # a(x) A p(y|x) = q(y[x)] = p(y|x)p(x) # q(y|x)a(x) = p(x,y) # a(x,y)

Label Shift

[p(y) # a(y) A p(xly) = a(x|y)] = p(x|y)p(y) # a(xly)a(y) = p(x,y) # a(x,y)

Concept Drift

[p(yIx) # a(y|x) A p(x) = q(x)] = p(y[x)p(x) # q(y|x)q(x) = p(x,y) # q(x,y)

[p(x]y) # a(x|y) A p(y) = a(y)] = p(xly)p(y) # a(xly)a(y) = p(x,y) # a(x,y)
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Covariate Shift

(a) Covariate shift causal (b) Covariate shift example.
graphical model.
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Label Shift

(a) Label shift causal
graphical model.

(b) Regression example.

I
'
I
5 | :I - w |
» .
:%}";... -
0 F0%r
* | |
0 5 10
X

(c) Classification example.
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Shift Intensity Comparison

Table: Detection accuracy for small, medium, and large simulated shifts and low (10%),
medium (50%), and high (100%) percentages of perturbed target samples on MNIST and
CIFAR-10. Reported accuracy values are results of the best DR technique (univariate: BBSDs,
multivariate: average of UAE and TAE). Underlined entries indicate accuracy values > 0.5.

Number of samples from test

Test Intensity
10 20 50 100 200 500 1,000 10,000
Small 0.00 0.00 0.14 0.14 0.18 0.36 0.40 0.54
3 Medium 0.14 0.21 0.39 0.38 0.42 0.57 0.66 0.76
'% Large 0.32 0.54 0.78 0.82 0.83 0.92 0.96 1.00
2
S 10% 0.11 0.15 0.24 0.25 0.28 0.44 0.54 0.66
50% 0.14 0.28 0.52 0.53 0.60 0.68 0.72 0.85
100% 0.26 0.41 0.61 0.64 0.70 0.82 0.84 0.86
° Small 0.11 0.11 0.12 0.14 0.20 0.23 0.33 -
& Medium 0.11 0.19 0.23 0.27 0.32 0.42 0.44 -
*;? Large 0.34 0.45 0.57 0.68 0.72 0.82 0.93 -
3 10% 0.12 0.13 0.21 0.26 0.27 0.31 0.44 -
2 50% 0.19 0.27 0.41 0.41 0.47 0.57 0.60 -
100% 0.29 0.41 0.44 0.53 0.60 0.70 0.78 -
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MNIST Difference Plot

® The original splits from the MNIST dataset appear to exhibit a dataset shift.
® We observed that the top anomalous samples depicted the digit 6.
® This particular shift does not look significant to the human eye and is also

declared harmless by our malignancy detector.

Training set average for 6 Test set average for 6 Difference for 6 with p-value 2.701e-10

0.08
0.06
0.04
0.02
0.00

-0.02
-0.04
-0.06
-0.08
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