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Motivation

Machine Learning systems are becoming ubiquitous.

Especially in high-stakes decision-making, it is of vital importance to
quantify our uncertainty in the predictions we make.

Image credit: unsplash.com

Uncertainty Quantification in ML 2

unsplash.com


Supervised Learning Recap

• Dataset D = {(xi , yi )}Ni=1 where
(x , y) ∼ p over D = X × Y with
x ∈ X , y ∈ Y.

• Prediction function fθ(x) : X → Y
producing labels ŷ = fθ(x) with
fθ(·) ∈ H.

• Loss function L(ŷ , y) measuring
prediction quality of fθ(·). Data point x Label y

Model fθ(·)

Prediction ŷ Loss L(·, ·)

How can we quantify uncertainty in the prediction ŷ?
We need to output a probability distribution pθ(y |x), not just a single ŷ!
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Labelling Models vs Probabilistic Models

Labelling Models

x fθ(·) ŷ

• Directly provides a label ŷ :

• Regression: ŷ ∈ R
• Classification: ŷ ∈ {1, . . . ,C}
• Do not provide a measure of con-

fidence, just a decision.

• Typically not suitable for uncer-
tainty quantification.

Probabilistic Models

x fθ(·)
ŷ

pθ(y |x)

• Provide a measure of confidence
pθ(y |x) alongside a decision ŷ .

• Enables uncertainty quantification.

• Can be turned into labelling mod-
els by hiding confidence score.
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Discriminative vs Generative Models

Discriminative (Conditional) Models

• Aim at identifying and approximat-
ing the discriminatory boundary.

• Maximize conditional: pθ(y |x).

• Better raw predictive performance.

Generative Models

• Model the data distribution to gain
ability to generate faithful samples.

• Maximize joint: pθ(x , y).

• Better uncertainty quantification.
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Aleatoric vs Epistemic Uncertainty

Uncertainty = AU + EU

Aleatoric Uncertainty (AU)

• Uncertainty within the data

• Irreducible with more data

• Analogy: Bayes error

Epistemic Uncertainty (EU)

• Uncertainty away from data

• Reducible with more data

• Analogy: approximation error

aleatoric

epistemic

true function
mean prediction
uncertainty region
observations
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Bayes Error vs Approximation Error

Input data

.75

Logistic Regression

.75

Neural Network

.75

Gaussian Process

.83 .93 1.00

.40 .90 .90
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Uncertainty in Classification

Softmax cross-entropy models
are already probabilistic models!

• Classification are often trained using
the softmax cross-entropy (CE) loss.

• The model’s logits are mapped
through the softmax function:

σ(z)i =
ezi∑C
j=1 e

zj

∑
i σ(z)i = 1

0 ≤ σ(z)i ≤ 1

• The CE loss measures agreement of
label and the categorical distribution.

Data point x Label y

Model fθ(·)

Softmax σ(·)

Cat(σ)

Loss L(·, ·)
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Uncertainty in Regression

Regression models need to be
turned into probabilistic models!

• Regression models are often trained
with squared error loss (not prob.).

• Instead model the output as a
conditional Gaussian distribution
parameterized by

• Predictive mean µ,
• Predictive variance σ2.

• Define loss as negative log likelihood:

L = − logN (y |µ, σ2)
Data point x Label y

Model fθ(·)

Mean µ Variance σ2

N (·|µ, σ2)

Loss L(·, ·)
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Evaluation of Uncertainties

Negative Log Likelihood

• Commonly used to evalu-
ate the quality of uncer-
tainty on some test set.

NLL = − log p(y |x)

• Can over-emphasize tail
probabilities.

• Is a proper scoring rule:
pred. probabilities match
true probabilities exactly.

Brier Score

• Measures squared error
of predicted probabilities
and true one-hot labels.

BS =
1

|Y|
∑
y′∈Y

(pθ(y ′|x)−yOH)2

• Insensitive to predicted
probabilities of infrequent
events (class imbalance).

• Is a proper scoring rule.

Expected Calibration Err.

• Measures alignment be-
tween predicted probabil-
ities and accuracy in dis-
tinct confidence buckets.

ECE =
S∑

s=1

|Bs |
N
|acc(Bs)−conf(Bs)|

Bs = {n |pθ(y |x) ∈ [ρs , ρs+1]}

• Not a proper scoring rule,
binning might cause non-
monotonic increase.

Predictive Entropy

Measures prediction surprise; not a proper scoring rule. H = −
∑

y′∈Y p(y ′|x) log p(y ′|x)
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Calibration

The frequency of predicted events should match the truly observed
frequency of events.
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Calibration: Temperature Scaling

• A classification network predicts σ(z):

σ(z)k =
ezk∑
k ′ e

zk′

• Replace σ(z) with σ(z/T ) where
T ∈ R+ is called the temperature.

• T is tuned to minimize NLL (a proper
scoring rule) on a validation set.

• As a result, the algorithm is
incentivized to match the true
probabilities as closely as possible.
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(Deep) Ensembling

• Ensembling is a classical technique from frequentist
statistics to bootstrap predictive variance.

• Don’t train a single model, train multiple!

• Randomness of data selection and hyperparameters.

• The predictions from these sub-models then yield:

ŷ = µ =
1

M

M∑
m=1

fθm(x)

Var[ŷ ] = σ2 =
1

M − 1

M∑
m=1

(fθm(x)− ŷ)2

Data point x

fθ1 (·) fθ2 (·) fθ3 (·)

Mean µ Variance σ2

N (y |µ, σ2)
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Monte Carlo (MC) Dropout

• Dropout is typically used as a regularization
technique during training time.

• Apply the dropout function o(θ) at test time to
yield a collection of M sparse sub-models.

• This is cheaper than training multiple models.

• The predictions from these sub-models then yield:

ŷ = µ =
1

M

M∑
m=1

fo(θ)(x)

Var[ŷ ] = σ2 =
1

M − 1

M∑
m=1

(fo(θ)(x)− ŷ)2

Data point x

fo(θ)(·) fo(θ)(·) fo(θ)(·)

Mean µ Variance σ2

N (y |µ, σ2)
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Bayesian Parameter Estimation: Likelihood

• Motivating example: estimating the parameter of a biased coin

• You flip a coin 100 times. It lands heads NH = 55 and tails NT = 45 times.
• What is the probability it will come up heads if we flip again?

• Model: observations xi are independent and identically distributed (i.i.d.)
Bernoulli random variables with parameter θ.

• The likelihood function is the probability of the observed data (the entire
sequence of H’s and T’s) as a function of θ:

L(θ) = p(D) =
N∏
i=1

θxi (1− θ)1−xi

= θNH (1− θ)NT

• NH and NT are sufficient statistics.

Uncertainty Quantification in ML 15



Bayesian Parameter Estimation: Likelihood (cont’d)

• The likelihood is generally very small, so it’s often convenient to work with
log-likelihoods.

L(θ) = θNH (1− θ)NT ≈ 7.9× 10−31

`(θ) = log L(θ) = NH log θ + NT log(1− θ) ≈ −69.31
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Bayesian Parameter Estimation: Maximum Likelihood

• Good values of θ should assign high probability to the observed data. This
motivates the maximum likelihood criterion.

• Solve by setting derivatives to zero:

d`

dθ
=

d

dθ
(NH log θ + NT log(1− θ))

=
NH

θ
− NT

1− θ

• Setting this to zero gives the maximum likelihood estimate:

θ̂ML =
NH

NH + NT
,

• Normally there’s no analytic solution, and we need to solve an optimization
problem (e.g. using gradient descent).
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Bayesian Parameter Estimation: Maximum Likelihood (cont’d)

• Maximum likelihood has a pitfall: if you have too little data, it can overfit.

• E.g., what if you flip the coin twice and get H both times?

θML =
NH

NH + NT
=

2

2 + 0
= 1

• But even a fair coin has 25% chance of showing this result.

• Because it never observed T, it assigns this outcome probability 0. This problem
is known as data sparsity.

• If you observe a single T in the test set, the likelihood is −∞.
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Bayesian Parameter Estimation: Beyond Maximum Likelihood

• In maximum likelihood, the observations are treated as random variables, but the
parameters are not.

• The Bayesian approach treats the parameters as random variables as well.

• To define a Bayesian model, we need to specify two distributions:

• The prior distribution p(θ), which encodes our beliefs about the parameters
before we observe the data
• The likelihood p(D |θ), same as in maximum likelihood

• When we update our beliefs based on the observations, we compute the posterior
distribution using Bayes’ Rule:

p(θ | D) =
p(θ)p(D |θ)∫

p(θ′)p(D |θ′) dθ′
.

• We rarely ever compute the denominator explicitly due to intractability.
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Bayesian Parameter Estimation: The Prior Distribution

• Let’s revisit the coin example. We already know the likelihood:

L(θ) = p(D) = θNH (1− θ)NT

• It remains to specify the prior p(θ).

• We can choose an uninformative prior, which assumes as little as possible. A
reasonable choice is the uniform prior.
• But our experience tells us 0.5 is more likely than 0.99. One particularly

useful prior that lets us specify this is the beta distribution:

p(θ; a, b) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1.

• This notation for proportionality lets us ignore the normalization constant:

p(θ; a, b) ∝ θa−1(1− θ)b−1.
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Bayesian Parameter Estimation: The Prior Distribution (cont’d)

Beta distribution for various values of a, b:
• Some observations:

• The expectation E[θ] = a/(a + b).
• The distribution gets more peaked

when a and b are large.
• The uniform distribution is the

special case where a = b = 1.

• The main use-case for the beta
distribution is as a prior for the
Bernoulli distribution.
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Bayesian Parameter Estimation: The Posterior Distribution

• Computing the posterior distribution:

p(θ | D) ∝ p(θ)p(D |θ)

∝
[
θa−1(1− θ)b−1

] [
θNH (1− θ)NT

]
= θa−1+NH (1− θ)b−1+NT .

• This is just a beta distribution with parameters NH + a and NT + b.

• The posterior expectation of θ is:

E[θ | D] =
NH + a

NH + NT + a + b

• The parameters a and b of the prior can be thought of as pseudo-counts.

• The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy.
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Bayesian Parameter Estimation: The Posterior Distribution (cont’d)

Bayesian inference for the coin flip example:

Small data setting
NH = 2, NT = 0

Large data setting
NH = 55, NT = 45

When you have enough observations, the data overwhelm the prior.
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Bayesian Parameter Estimation: Maximum A-Posteriori

• What do we actually do with the posterior?

• Maximum a-posteriori (MAP) estimation: find the most likely parameter settings
under the posterior

• This converts the Bayesian parameter estimation problem into a maximization
problem

θ̂MAP = arg max
θ

p(θ | D)

= arg max
θ

p(θ,D)

= arg max
θ

p(θ) p(D |θ)

= arg max
θ

log p(θ) + log p(D |θ)
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Bayesian Parameter Estimation: Maximum A-Posteriori (cont’d)

• Joint probability in the coin flip example:

log p(θ,D) = log p(θ) + log p(D | θ)

= const + (a− 1) log θ + (b − 1) log(1− θ) + NH log θ + NT log(1− θ)

= const + (NH + a− 1) log θ + (NT + b − 1) log(1− θ)

• Maximize by finding a critical point

0 =
d

dθ
log p(θ,D) =

NH + a− 1

θ
− NT + b − 1

1− θ

• Solving for θ,

θ̂MAP =
NH + a− 1

NH + NT + a + b − 2
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Bayesian Parameter Estimation: (Posterior) Predictive Distribution

• The posterior predictive distribution is the distribution over future observables
given the past observations. We compute this by marginalizing out the
parameter(s):

p(D′ | D) =

∫
p(θ | D)p(D′ |θ) dθ.

• For the coin flip example:

θpred = Pr(x′ = H | D)

=

∫
p(θ | D)Pr(x′ = H | θ)dθ

=

∫
Beta(θ;NH + a,NT + b) · θ dθ

= EBeta(θ;NH+a,NT +b)[θ]

=
NH + a

NH + NT + a + b
,
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Bayesian Parameter Estimation: Convergence Properties

Comparison of estimates in the coin flip example:

Formula NH = 2,NT = 0 NH = 55,NT = 45

θ̂ML
NH

NH+NT
1 55

100 = 0.55

θ̂MAP
NH+a−1

NH+NT +a+b−2
3
4 = 0.75 56

102 ≈ 0.549

θpred
NH+a

NH+NT +a+b
4
6 ≈ 0.67 57

104 ≈ 0.548

How many samples do we need for θ̂ML to be a good estimate of θ? Use Hoeffding’s
Inequality for sampling complexity bound

p(|θ̂ML − θ| ≥ ε) ≤ 2e−2Nε2

where N = NH + NT .
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From Bayesian Parameter Estimation to BLR/BNN and GPs

Maximum Likelihood Estimation (MLE)

We can pick the model that maximizes the data likelihood without restrictions.

θMLE = arg max
θ

p(D|θ)

Maximum A-Posteriori Estimation (MAP)

We can incorporate prior information and regularize the model’s prediction by
introducing a prior p(θ) and reason about the posterior p(θ|D) using Bayes’ rule.

θMAP = arg max
θ

p(θ|D) =
p(D|θ)p(θ)∫

θ p(D|θ)p(θ)dθ
∝ p(D|θ)p(θ)
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From Bayesian Parameter Estimation to BLR/BNN and GPs (cont’d)

Bayesian Model Averaging / Fully Bayesian Analysis

Use predictions of all potential models and weight each model’s predictions by the
posterior. This leads to Bayesian Linear Regression / Bayesian Neural Networks.

p(y |x ,D) =

∫
θ
p(y |x ,θ)p(θ|D)dθ =

∫
θ
p(y |x ,θ)

p(D|θ)p(θ)∫
θ p(D|θ)p(θ)dθ

dθ

Gaussian Process (GP)

If both the prior p(θ) and the likelihood p(D|θ) are Gaussian, then the posterior
predictive distribution p(y |x ,D) is Gaussian. Hence, we can model the predictive
distribution directly without explicitly performing model averaging.

p(y |x ,D) = N (µ,Σ) y = f (x) ∼ GP(m(x), κ(x , x ′))
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Bayesian Linear Regression: MLE Formulation

• We can give linear regression a probabilistic interpretation by assuming a Gaussian
noise model:

t | x ∼ N (w>x + b, σ2)

• Linear regression is just maximum likelihood under this model:

1

N

N∑
i=1

log p(t(i) | x(i);w, b) =
1

N

N∑
i=1

logN (t(i);w>x + b, σ2)

=
1

N

N∑
i=1

log

[
1√
2πσ

exp

(
−(t(i) −w>x− b)2

2σ2

)]

= const− 1

2Nσ2

N∑
i=1

(t(i) −w>x− b)2

Uncertainty Quantification in ML 30



Bayesian Linear Regression: Intuition

• Bayesian linear regression considers various plausible explanations for how the
data points were generated.

• It makes predictions using all possible regression weights, weighted by their
posterior probability.
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Bayesian Linear Regression: Setup

• Leave out the bias for simplicity

• Prior distribution: a broad, spherical (multivariate)
Gaussian centered at zero:

w ∼ N (0, ν2I)

• Likelihood: same as in the maximum likelihood
formulation:

t | x,w ∼ N (w>x, σ2)

• Posterior:

w | D ∼ N (µ,Σ)

µ = σ−2ΣX>t Σ−1 = ν−2I + σ−2X>X
— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression: Predictive Distribution

Posterior predictive distribution:

p(t | x,D) =

∫
p(t | x,w)p(w | D) dw

= N (t |µ>x, σ2
pred(x))

σ2
pred(x) = σ2 + x>Σx,

where µ and Σ are the posterior mean and covariance of Σ.
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Bayesian Linear Regression: Non-Linearity via Basis Functions

• We can turn this into nonlinear regression using basis functions.

φj(x) = x j

−1 0 1
−1

−0.5

0

0.5

1

φj(x) = exp

(
− (x − µj)

2

2s2

)

−1 0 1
0   

0.25

0.5 

0.75

1   

φj(x) = σ
(x − µj

s

)

−1 0 1
0

0.25

0.5

0.75

1

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression: Predictive Uncertainty

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Neural Networks: Motivation

In addition to assuming a
distribution on the output y ,
also assume a distribution on

the parameters θ.

Uncertainty Quantification in ML 36



Bayesian Neural Networks: Computational Issues

• Computationally difficult integrals arise in Bayesian parameter estimation:
• Marginal likelihood (needed for posterior): p(D) =

∫
θ p(D|θ)p(θ)dθ

• Posterior predictive distribution: p(y |x ,D) =
∫
θ p(y |x ,θ)p(θ|D)dθ

• Approximately compute one or both of these objects!

Sampling Methods

• Approximate p(y |x ,D) by gen-
erating a finite parameter set
{θ1, . . . ,θT} whose empirical dis-
tribution matches p(θ|D).

• Find good approx. with low T .

• Slow but asymptotically exactly
recovers posterior.

Variational Inference

• Model posterior p(θ|D) using a
parameterized approximate poste-
rior qφ(θ), often Gaussian.

• Iteratively improve approximation
via optimization of φ.

• Fast but limited in functional form
of qφ(θ).
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Bayesian Parameter Estimation Example

Measure your heart rate at 8am

Prior to measuring

50.0 100.0

0.1

0.2

bpm8

p(bpm8) Prior: N (60, 10)

After measuring

50.0 100.0

0.1

0.2

bpm8

p(bpm8) Prior: N (60, 10)

Monday

Tuesday

Wednesday

Thursday

Posterior: N (60, 4)

— Example from http://videolectures.net/mlss2012_cunningham_gaussian_processes/
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Bayesian Parameter Estimation Example

Measure your heart rate at 8am and 9am

Prior to measuring
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Bayesian Parameter Estimation Example

Measuring your heart rate throughout the day

8.0 9.0 10.0 11.0 12.0

60.0

80.0

100.0

t

bpm

8.0 9.0 10.0 11.0 12.0

60.0

80.0

100.0

t

bpm

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5

60.0

80.0

100.0

t

bpm
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Gaussian Process: Definition

A Gaussian process describes a distribution over functions (infinitely long vectors).

• Notation: f (x) ∼ GP(m(x), κ(x , x ′))

• Mean function: m(x) = E[f (x)]

• Covariance function: κ(x, x′) = E[(f (x)−m(x))(f (x′)−m(x′))]

We have data points X = [x>1 , . . . , x
>
n ]> and are interested in their function values

f (X ) = (f (x1), . . . , f (xn))>.

A Gaussian process is a collection of random variables, any finite number of which
have joint Gaussian distribution.

f (x) is one such subset and has (prior) joint Gaussian distribution.
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Gaussian Process: Mean and Covariance

The mean function m
• The mean function m(·) encodes the a-priori expectation of the function.

• m(x) will dominate the inference result in case we have not yet observed data similar
to x.

• Typical choice: zero-centering the data: m(x) = 0

The covariance function κ

• κ(x, x′) measures similarity between x and x′ → similar data points have similar
function values.

• κ is a Mercer kernel.

• Typical choice: squared exponential kernel: κ(x, x′) = σ2e−
(x−x′)>(x−x′)

2`2 where σ
defines the height and ` the width of the kernel.
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Gaussian Process: Sampling from Prior

Same procedure as for multivariate Gaussians:

• Generate u ∈ RD by drawing d samples from N (0, ID).

• Perform Cholesky decomposition Σ = LL>.

• Compute y = µ + Lu where y ∼ N (µ,Σ).
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Gaussian Process: The Joint Distribution

We have training data X ∈ RN×D , corresponding observations y = f (X ), and test
data points X∗ ∈ RN∗×D for which we want to infer function values y∗ = f (X∗).
The GP defines the following joint distribution

p(y , y∗|X ,X∗) =

(
y
y∗

)
∼ N

([
m(X )
m(X∗)

]
,

[
K + σ2

nI K∗
K>∗ K∗∗

])
where

K = κ(X ,X ) K∗ = κ(X ,X∗) K∗∗ = κ(X∗,X∗).

Typically, data points are corrupted by noise → our functions should not act as
interpolators. We therefore assume

yi = f (xi ) + ε where ε ∼ N (0, σ2
n).
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Gaussian Process: Inference

Inferring an unknown function value and its covariance follows from conditioning
multivariate Gaussians:

p(y∗|y ,X ,X∗) ∼ N (µ,Σ)

Non-noisy case

• µ = m(X∗) + K>∗ K−1(y −m(X ))

• Σ = K∗∗ − K>∗ K−1K∗

Noisy case

• µ = m(X∗) + K>∗ (K + σ2
nI )−1(y −m(X ))

• Σ = K∗∗ − K>∗ (K + σ2
nI )−1K∗
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Gaussian Process: Influence of Kernel Hyperparameters

κ(x, x′) = σ2e−
(x−x′)>(x−x′)

2`2
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Conformal Prediction
• Can we construct confidence intervals for predictions? Yes!
• Want a function γ(·) that takes in a sample and maps it to a prediction set.
• Classification: return a set of classes: γ : X → C with C ⊆ Y.
• Regression: return a prediction range: γ : X → [a, b] with a, b ∈ R, a ≤ b.

• We want to find γ(·) such that the prediction set contains the true label y with
high probability (at significance level α):

p(y ∈ γ(x)) ≥ 1− α

— https://arxiv.org/abs/2107.07511
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Conformal Prediction: Adaptive Prediction Sets

• Desiderata for γ(·): small for easy samples, large for hard samples.

• Assume access to a validation set Dval = {(xi , yi )}Nval
i=1.

1) Get score of correct class

For each (xi , yi ) ∈ Dval

compute the consumed prob.
mass until correct class.

si =
∑K

j=1 fθ(xi )j

y

sorted softmax scores

2) Get 1− α quantile

For {s1, . . . , sNval}, sort

list and compute desired
quantile q̂ at index
d(Nval+1)(1−α)e

Nval
.

3) Form prediction sets
For a new data point x get
sorted softmax probabilities

and add classes to prediction
until q̂ is reached.

c3
c7

γ(x) = {c3, c7} at α.
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Selective Prediction

Selective prediction introduces a rejection class ⊥ via gating mechanism.

Goal: Derive a selection function g : X → R which, given an acceptance threshold τ ,
determines whether a model f : X → Y should predict on a data point x .

(f , g)(x) =

{
f (x) g(x) ≥ τ
⊥ otherwise.

The performance of a selective classifier (f , g) on a dataset D is assessed based on

• the coverage of (f , g), i.e. what fraction of points we predict on; and

• the selective utility of (f , g) on the points it accepts.

cov(f , g) =
|{x : g(x) ≥ τ}|

|D|
util(f , g) =

∑
{(x ,y):g(x)≥τ}

u(f (x), y)
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Anomaly / Out-of-Distribution Sample Detection

• Selective prediction identifies hard-to-classify examples within the distribution.

• But what about examples that are completely outside of the known distribution?

Supervised

Expose model to OOD points during
training to regularize predictions.

Unsupervised

Determine OOD without knowledge
of the nature of anomalous points.
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Anomaly / Out-of-Distribution Sample Detection: Approaches

Mahalanobis Distance

Assume each class is a Gaussian in output
representation and compute min distance.

Nearest Neighbor Guiding

Check whether nearest neighbors in output
representation are within a distance.

Max Softmax / Max Logit

Threshold either the maximum of the softmax or the pre-softmax / logit output.
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Open Problems & Discussion

Scalability

• Bayesian models: computational
infeasibility or approximations.

• Ensembles: need to train multiple
models from scratch.

Distinguishing Types of Uncertainty

Correct error attribution is challeng-
ing in real world high-dimensional
data; relevant for decision-making.

Model Misspecification

If the model assumption is violated,
UQ methods can lure users into a
false sense of security.

Evaluation & Regulation

• Ambiguity of ground truth.

• Validation, certification, and eth-
ical use of UQ methods for usage
in highly critical applications.
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Backup



Recap: Basis Functions

• How is this useful? We can use linear methods on non-linear features to yield
non-linear decision boundaries and regression curves.

φ

([
x1

x2

])
=

 x2
1

x2
2√

2x1x2



— https://gregorygundersen.com/blog/2019/12/10/kernel-trick/

Uncertainty Quantification in ML 54

https://gregorygundersen.com/blog/2019/12/10/kernel-trick/


Kernels: Motivation

Generalized Linear Models (GLM)

• Fixed non-linear basis functions.

• Limited hypothesis space.

• Easy to optimize (convex).

Neural Network (NN)

• Adaptive non-linear basis functions.

• Rich hypothesis space.

• Hard to optimize (non-convex).

Towards Kernel Methods
• Feature space in GLM and NN needs to be explicitly constructed.

• Can we use a large (possibly infinite) set of fixed non-linear basis functions without
explicitly constructing this space?

• Yes, by using kernel methods!
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Kernel Methods

• Kernel methods are instance-based learners: they assign a weight θi to any
training point xi .

• Predictions on new data points x′ make use of a kernel function κ(·, ·) measuring
the similarity of x′ with all points xi from the training set.

• Kernelized binary classification example:

ŷ = sgn
n∑

i=1

θiyiκ(xi , x
′)

where

• y ∈ {−1,+1} is the label assigned to a data point x.
• θi is the weight for training example xi .
• κ : X × X → R is the kernel function measuring similarity between x, x′ ∈ R.
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The Kernel Trick

• Let φ(·) be a set of not further specified basis functions mappings.

• Explicitly constructing a high-dimensional feature space is expensive.

• By using the kernel trick, we can implicitly perform operations in a
high-dimensional feature space.

• In many algorithms, this feature space only appears as a dot product
〈φ(x), φ(x′)〉 = φ(x)>φ(x′) of input pairs x, x′.

• We define these dot products as the kernel function

κ(x, x′) = 〈φ(x), φ(x′)〉 = φ(x)>φ(x′)

which can also be thought of as a similarity function between x and x′.
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Dual Representation

• Recall the regularized linear regression objective:

L(θ) =
1

2

N∑
n=1

(θ>φ(xn)− yn)2 +
λ

2
θ>θ

• Finding optimal θ:

∇θL(θ) =
N∑

n=1

(θ>φ(xn)− yn)φ(xn) + λθ = 0

θ = − 1

λ

N∑
n=1

(θ>φ(xn)− yn)︸ ︷︷ ︸
an

φ(xn)

• The weights θ can be written as a linear combination of the training examples:

θ =
N∑

n=1

anφ(xn) where a =
[
a1, . . . , an

]
are called the dual parameters
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Dual Representation

• Substituting θ back into linear regression y(x) = θ>φ(x) yields:

θ =
N∑

n=1

anφ(xn) y(x) =
N∑

n=1

anφ(xn)>φ(x) =
N∑

n=1

anκ(xn, x)

• The feature space only appears as a dot product.

• The kernel matrix, or gram matrix, K ∈ RN×N collects kernel values in a
symmetric positive semi-definite matrix for all data points (Mercer’s theorem):

Kij = κ(xi , xj) = φ(xi )
>φ(xj)

• If a kernel defines such a kernel matrix, then the kernel is valid.

Uncertainty Quantification in ML 59



Popular Kernels

Polynomial Kernel

κPol(x, x
′) = (x>x′ + c)d

−1 0 1
−1

−0.5

0

0.5

1

Squared Exponential Kernel

κSE(x, x′) = σ2 exp

(
− (x− x′)2

2`2

)

−1 0 1
0   

0.25

0.5 

0.75

1   
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Kernel Composition Rules

Let κ1(x, x′) and κ2(x, x′) be valid kernels, then the following kernels are also valid:

• κ(x, x′) = cκ1(x, x′) ∀c > 0

• κ(x, x′) = f (x)κ1(x, x′)f (x′) ∀f
• κ(x, x′) = g(κ1(x, x′)) g is polynomial with coefficients ≥ 0.

• κ(x, x′) = exp(κ1(x, x′))

• κ(x, x′) = κ1(x, x′) + κ2(x, x′) kernel OR-ing

• κ(x, x′) = κ1(x, x′)κ2(x, x′) kernel AND-ing

• κ(x, x′) = x>Ax′ A symmetric and p.s.d.

Check out the Kernel Cookbook:
https://www.cs.toronto.edu/~duvenaud/cookbook/
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