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Motivation

Machine Learning systems are becoming ubiquitous.

Especially in high-stakes decision-making, it is of vital importance to
quantify our uncertainty in the predictions we make.

Image credit: unsplash.com
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Supervised Learning Recap

* Dataset D = {(x;, i)}, where Prediction 0 Loss £(-. -
) i= y }—> oss L(-,
(x,y) ~ pover D =X x ) with | 7 )
xeX, ye). Pt
® Prediction function fp(x): X — Y Vel
producing labels y = fg(x) with Model f() -
fg() € H.

® |oss function L(y,y) measuring :
prediction quality of fg(-). Data point x Label y

How can we quantify uncertainty in the prediction y?
We need to output a probability distribution pg(y|x), not just a single y!
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Labelling Models vs Probabilistic Models

Labelling Models Probabilistic Models

[x] fo (") @ - o pe()I/IX)
[xF—1fo(-) [ .

® Directly provides a label y: NN’I
® Regression: y € R
e Classification: y € {1,...,C}

® Do not provide a measure of con-
fidence, just a decision.

® Provide a measure of confidence
po(y|x) alongside a decision y.

® Enables uncertainty quantification.

® Can be turned into labelling mod-

e Typically not suitable for uncer- :
els by hiding confidence score.

tainty quantification.
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Discriminative vs Generative Models

Discriminative (Conditional) Models

® Aim at identifying and approximat-
ing the discriminatory boundary.

® Maximize conditional: pg(y|x).

® Better raw predictive performance.

Generative Models

.-%

® Model the data distribution to gain
ability to generate faithful samples.

® Maximize joint: pg(x,y).

® Better uncertainty quantification.

Uncertainty Quantification in ML
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Aleatoric vs Epistemic Uncertainty

Uncertainty = AU + EU
----- true function

Aleatoric Uncertainty (AU) —— mean prediction

uncertainty region
¢ observations

® Uncertainty within the data

® |rreducible with more data

aleatoric

® Analogy: Bayes error

Epistemic Uncertainty (EU)

® Uncertainty away from data
® Reducible with more data

® Analogy: approximation error

| epistemic
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Bayes Error vs Approximation Error

Input data Logistic Regression Neural Network Gaussian Process
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Uncertainty in Classification

Softmax cross-entropy models
are already probabilistic models!

e (Classification are often trained using
the softmax cross-entropy (CE) loss.

® The model’s logits are mapped
through the softmax function:

zi . =1
sy S Tiota
> €” 0<o(z); <1

® The CE loss measures agreement of
label and the categorical distribution.

Cat(o)

[

Softmax o(+)

I

Data point x

Model fo(-) k--

Label y
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Uncertainty in Regression

Regression models need to be
turned into probabilistic models!

® Regression models are often trained
with squared error loss (not prob.).
® |nstead model the output as a
conditional Gaussian distribution
parameterized by
® Predictive mean g,
® Predictive variance o?.

® Define loss as negative log likelihood:

L =—logN(y|u,0?)

N(|p,0?)

[\

1

| Mean | |Var|ance o2 | /
4

Model fy(-)

-

- -

4
’

v
-

Label y
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Evaluation of Uncertainties

Negative Log Likelihood Expected Calibration Err.

® Commonly used to evalu-
ate the quality of uncer-
tainty on some test set.

NLL = — log p(y|x)

® Can over-emphasize tail
probabilities.

® |s a proper scoring rule:
pred. probabilities match
true probabilities exactly.

® Measures squared error
of predicted probabilities
and true one-hot labels.

1 / 2
BS =13 > (pa(y'[x)—yon)

y'ey

® [nsensitive to predicted
probabilities of infrequent
events (class imbalance).

® |s a proper scoring rule.

® Measures alignment be-
tween predicted probabil-
ities and accuracy in dis-
tinct confidence buckets.

S
|Bs|
ECE = Bs)—conf(B
5:21 y |2cc(Bs)—conf(E;)]
Bs = {n|pe(y|x) € lps, ps+1]}
® Not a proper scoring rule,

binning might cause non-
monotonic increase.

Predictive Entropy

R g & . _ ’ ’
Measures prediction surprise; not a proper scoring rule. H=-> Ve p(y'|x) log p(y'|x)
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Calibration
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The frequency of predicted events should match the truly observed
frequency of events.
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Calibration: Temperature Scaling

¢ A classification network predicts o(z): 10
0.8
( ) e’k gu.u
o\Z)y = ———— g .
Zk’ ezk/ 2 0.4
0.2
H 0.0
o Replace U(Z) Wlth U(Z/ T) Where 0.0 02 04 0.6 08 1.0 0.0 0.2 04 0.6 08 1.0
T € R, is called the temperature. Confidence
Uncal. - CIFAR-10 Temp. Scale - CIFAR-10
® T is tuned to minimize NLL (a proper L0 _ReZth"tm(SD) : folter 110 (50
. . . utputs
scoring rule) on a validation set. 08
. . E’ 0.6
® As a result, the algorithm is g
. .o S 04
incentivized to match the true < )
iy . 0.2 [
probabilities as closely as possible. e
0.

.0
00 02 04 06 08 1.0 0.0 02 04 06 08 1.0
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(Deep) Ensembling

® Ensembling is a classical technique from frequentist
statistics to bootstrap predictive variance. /\
® Don't train a single model, train multiple! Nyl o?)
. Y, o
® Randomness of data selection and hyperparameters.
® The predictions from these sub-models then yield: |M | | 2|
€an [ Variance o
1 M
y:M:MZfem(X) % %
m=1
M
1 ® [ J [} [ ]
- 2 512
Var[j] = 0° = M_1 Z(fﬂm(x) —9) fo, (") fo, (") fos(+)
m=1 _ J

Y
Data point x
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Monte Carlo (MC) Dropout

® Dropout is typically used as a regularization
technique during training time.

e Apply the dropout function o(8) at test time to
yield a collection of M sparse sub-models.

® This is cheaper than training multiple models.

® The predictions from these sub-models then yield:

1 M
Vy=n=57 2 foe)(x)
m=1
1 M
Var[y] = o M_1 Z(fo(ﬂ)( ) —9)?

\

Nylp,o®

/\

Mean p

Variance o2

fo(e)(+)

G| %

[BC sl

© ()

k

Data point x
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Bayesian Parameter Estimation: Likelihood

® Motivating example: estimating the parameter of a biased coin
® You flip a coin 100 times. It lands heads Ny = 55 and tails N1 = 45 times.
® What is the probability it will come up heads if we flip again?
® Model: observations x; are independent and identically distributed (i.i.d.)
Bernoulli random variables with parameter 6.
® The likelihood function is the probability of the observed data (the entire
sequence of H's and T's) as a function of 6:

N

L(9) = p(D) = [ (1 — )"

i=1
= gNH(1 — g)NT

® Ny and Nt are sufficient statistics.
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Bayesian Parameter Estimation: Likelihood (cont'd)

® The likelihood is generally very small, so it's often convenient to work with

log-likelihoods.
L(0) = N1 (1 — o)NT ~7.9x 1073
0(0) = log L(0) = Ny log 6 + Nt log(1l — 6) ~ —69.31
1.4 1e=30 Likelihood Log-likelihood
-
o0 -100
08 -120
0.6 ~140
04 -160
0.2 -180
%935 02 0.4 0.6 0.8 10 ~209% 02 0.4 0.6 0.8 10
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Bayesian Parameter Estimation: Maximum Likelihood

® Good values of # should assign high probability to the observed data. This
motivates the maximum likelihood criterion.

® Solve by setting derivatives to zero:

ds d
_ Nu Nt
0 1-60

® Setting this to zero gives the maximum likelihood estimate:

Ny

s, —
MET Ny + Ny

® Normally there's no analytic solution, and we need to solve an optimization
problem (e.g. using gradient descent).

VECTOR
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Bayesian Parameter Estimation: Maximum Likelihood (cont'd)

® Maximum likelihood has a pitfall: if you have too little data, it can overfit.

E.g., what if you flip the coin twice and get H both times?

Ny 2 g
 Ny+ Nt 240

Ot

® But even a fair coin has 25% chance of showing this result.

® Because it never observed T, it assigns this outcome probability 0. This problem
is known as data sparsity.

If you observe a single T in the test set, the likelihood is —occ.
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Bayesian Parameter Estimation: Beyond Maximum Likelihood

® |n maximum likelihood, the observations are treated as random variables, but the
parameters are not.

The Bayesian approach treats the parameters as random variables as well.

To define a Bayesian model, we need to specify two distributions:
® The prior distribution p(@), which encodes our beliefs about the parameters
before we observe the data
® The likelihood p(D | @), same as in maximum likelihood
® When we update our beliefs based on the observations, we compute the posterior
distribution using Bayes' Rule:

p(9)p(D|6)

(0|D) fpe/ D‘el)dGI

We rarely ever compute the denominator explicitly due to intractability.
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Bayesian Parameter Estimation: The Prior Distribution

® |et's revisit the coin example. We already know the likelihood:
L(#) = p(D) = 9™ (1~ )"

® |t remains to specify the prior p(6).

® We can choose an uninformative prior, which assumes as little as possible. A
reasonable choice is the uniform prior.

® But our experience tells us 0.5 is more likely than 0.99. One particularly
useful prior that lets us specify this is the beta distribution:

M(a+ b)

r(a)r(p)

® This notation for proportionality lets us ignore the normalization constant:

p(6; a, b) = 97711 —9)> L.

p(6; a, b) o #771(1 — 9)P~L.

VECTOR
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Bayesian Parameter Estimation: The Prior Distribution (cont'd)

Beta distribution for various values of a, b:
® Some observations:

® The expectation E[f] = a/(a + b).

® The distribution gets more peaked
when a and b are large.

® The uniform distribution is the
special case where a= b = 1.

0 90 90 90 0

® The main use-case for the beta
distribution is as a prior for the

f m Bernoulli distribution.
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Bayesian Parameter Estimation: The Posterior Distribution

e Computing the posterior distribution:
p(8]D)  p(8)p(D| 6)
o 62711 - e)bfl] [e’VH(l _g)NT
— 03*1+NH(1 . 9)b71+NT'
® This is just a beta distribution with parameters Ny + a and Nt + b.
® The posterior expectation of 8 is:

Ny + a
Ny+ Nt +a+b

E[6|D] =

® The parameters a and b of the prior can be thought of as pseudo-counts.

® The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy.
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Bayesian Parameter Estimation: The Posterior Distribution (cont'd)

Bayesian inference for the coin flip example:

Small data setting

Ny=2 Nr=0

3.0

— Prior
250 — Likelihood

— Posterior
2.0
15
1.0
0.5
0'8.0 0.2 0.4 0.6 0.8

1.0

9

Large data setting
Ny =55, Nyt =45

— Prior

8| — Likelihood

7\| — Posterior

6

5

4

3

2

1

8.0 0.2 0.4 0.6 0.8 1.0

When you have enough observations, the data overwhelm the prior.

Uncertainty Quantification in ML
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Bayesian Parameter Estimation: Maximum A-Posteriori

® What do we actually do with the posterior?

® Maximum a-posteriori (MAP) estimation: find the most likely parameter settings
under the posterior

® This converts the Bayesian parameter estimation problem into a maximization

problem
Orniap = arg mgx p(0|D)
= argmax p(0,D)
= argmax p(8) p(D|6)
= arg max log p(0) + log p(D | 0)
Uncertainty Quantification in ML 24 SR, Ve



Bayesian Parameter Estimation: Maximum A-Posteriori (cont'd)

® Joint probability in the coin flip example:

log p(0, D) = log p(0) + log p(D | 0)
=const + (a—1)logd + (b — 1) log(1 — ) + Ny log 6 + Nt log(1l — 0)
=const + (Ny +a—1)logf + (Nt + b — 1) log(1 — )

® Maximize by finding a critical point

NH+3*1_NT+b*1

d

a0

® Solving for 6,
Ny+a—-1

Ny+Nr+a+b—-2

Oviap =
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Bayesian Parameter Estimation: (Posterior) Predictive Distribution

® The posterior predictive distribution is the distribution over future observables

given the past observations. We compute this by marginalizing out the

parameter(s):
oD D) = [ (61 D)p(D |6) 6.
® For the coin flip example:
fprea = Pr(x' = H|D)
= / p(0| D)Pr(x' = H|0)do
= /Beta(e; Ny + a,Nr + b)-6do

= EBeta(G;NH+a,NT+b) [e]
. Ny + a
~ Ny +Nr+a+b’

Uncertainty Quantification in ML 26
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Bayesian Parameter Estimation: Convergence Properties

Comparison of estimates in the coin flip example:

Formula Ny=2,Nr=20 Ny =55, Nt =45

Orie Nt 1 o5 = 0.55
Oaar At 3 -0.75 56~ 0.549
Oored R RTaTE 4 ~0.67 5T~ 0.548

How many samples do we need for GAML to be a good estimate of #7 Use Hoeffding's
Inequality for sampling complexity bound

P10 — 0] > €) < 2e72N

where N = Ny + Nt.
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From Bayesian Parameter Estimation to BLR/BNN and GPs

Maximum Likelihood Estimation (MLE)

We can pick the model that maximizes the data likelihood without restrictions.

OmLe = arg max p(D|6)
0

Maximum A-Posteriori Estimation (MAP)

We can incorporate prior information and regularize the model’s prediction by
introducing a prior p(@) and reason about the posterior p(8|D) using Bayes' rule.

Ouunp = arg max p(61D) = 2D NP o< p(DI6)p(6)

~ JoP(DIO)p(6)d6
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From Bayesian Parameter Estimation to BLR/BNN and GPs (cont'd)

Bayesian Model Averaging / Fully Bayesian Analysis

Use predictions of all potential models and weight each model’s predictions by the
posterior. This leads to Bayesian Linear Regression / Bayesian Neural Networks.

ply|x, D) = /9 ply|x.8)p(6]D)d6 = /9 PUIx.O) Zg‘lzizéz;da

Gaussian Process (GP)

If both the prior p(8) and the likelihood p(D|@) are Gaussian, then the posterior
predictive distribution p(y|x, D) is Gaussian. Hence, we can model the predictive
distribution directly without explicitly performing model averaging.

py|x, D) = N(p, %) y = f(x) ~ GP(m(x), 5(x, x'))
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Bayesian Linear Regression: MLE Formulation

® \We can give linear regression a probabilistic interpretation by assuming a Gaussian
noise model:

t|x ~N(w'x+b, 0?)

® Linear regression is just maximum likelihood under this model:

N
%Zlogp )| x(); w, b) = Zlog/\/t()wx+ba)
i=1

() —wTx — p)2
:Ib;log [\/Laexp <—(t 252 b) )]

2Zt( —w'x— b)?
No

= const —
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Bayesian Linear Regression: Intuition

® Bayesian linear regression considers various plausible explanations for how the

data points were generated.

® |t makes predictions using all possible regression weights, weighted by their

posterior probability.

A

\ 4

\ 4

no observations

\ 4

one observation

two observations

Uncertainty Quantification in ML
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Bayesian Linear Regression: Setup

] Leave out the bias for Slmp|ICIty likelinood | prorposterr | dmasce
wy y
® Prior distribution: a broad, spherical (multivariate) @ %
Gaussian centered at zero: gl L@
wy w ]
w ~ N(0,221) “ “ ;
® Likelihood: same as in the maximum likelihood o ol :

wy

formulation:
t]x,w~N(w'x, o?)

-
A

0w

® Posterior:

w| D~ N(p, 5) :
n= o 2EX "t 1o 2o 2XTX e |

— Bishop, Pattern Recognition and Machine Learning

o\ o
o

0wy
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Bayesian Linear Regression: Predictive Distribution

Posterior predictive distribution:

p(t|%,D) —/p(trx,w)p(ww)dw
= Nt 1%, 02, 0q(x))

afmd(x) =0° +x'Bx,

where 1 and X are the posterior mean and covariance of X.
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Bayesian Linear Regression: Non-Linearity via Basis Functions

® We can turn this into nonlinear regression using basis functions.

o= a0 e (-E527) a0) = o (X514)

252

1

! \ (V'

' 07| i 075
// ‘\‘ “‘ ‘\ \‘“‘
0 N A A A

777 0.5 \\ cf \‘ 0'5‘
-0.5 / / ‘ /
. / 0.25 / \\ 0.25

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression: Predictive Uncertainty

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Neural Networks: Motivation

%

So

N
In addition to assuming a N A O
distribution on the output y, e
also assume a distribution on
the parameters 0. AN /& A %

S

#
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Bayesian Neural Networks: Computational Issues

e Computationally difficult integrals arise in Bayesian parameter estimation:
* Marginal likelihood (needed for posterior): p(D) = [, p(D|0)p(0)d6
® Posterior predictive distribution: p(y|x, D) = [, p(y|x,0)p(6|D)d6

® Approximately compute one or both of these objects!

Sampling Methods Variational Inference

e Approximate p(y|x,D) by gen-
erating a finite parameter set
{01, ...,071} whose empirical dis-
tribution matches p(6|D).

® Find good approx. with low T.

® Slow but asymptotically exactly
recovers posterior.

® Model posterior p(@|D) using a
parameterized approximate poste-
rior g4(@), often Gaussian.

® |teratively improve approximation
via optimization of ¢.

® Fast but limited in functional form
of q¢(0).

Uncertainty Quantification in ML
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Bayesian Parameter Estimation Example

Measure your heart rate at 8am

Prior to measuring After measuring
p(bpm8) ’ Prior: (60, 10) p(bPm8) [ 5o N (60, 10)
[ ] Monday
0.2 0.2 Tuesday
Wednesday
[} Thursday
Posterior: N(60, 4)

0.1 0.1 |

/\ bpm8 bpm8

T T — T
50.0 100.0 50.0 100.0

— Example from http://videolectures.net/mlss2012_cunningham_gaussian_processes/

#
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http://videolectures.net/mlss2012_cunningham_gaussian_processes/

Bayesian Parameter Estimation Example

Measure your heart rate at 8am

Prior to measuring

1072

p(bpm8, bpm9)

p(bpm8, bpm9)

and 9am

After measuring

0.1

5.102

bpm8

° 80
=
60 p(bpm8, bpm9)
1073

[
2
0

8040

Uncertainty Quantification in ML
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Bayesian Parameter Estimation Example

Measuring your heart rate throughout the day

100.0 | PPM 100.0 |PPM
v ‘
800 | 800 | .34
60.0 a ¢ 60.0 8 8 S
t t
T T T T T T T T T T
80 9.0 100 11.0 12.0 80 9.0 100 110 12.0
100.0 |PPm
80.0 :
60.0 .
t

75 80 85 90 95 100 105 110 115 120 125
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Gaussian Process: Definition

A Gaussian process describes a distribution over functions (infinitely long vectors).

e Notation: f(x) ~ GP(m(x), x(x,x"))
® Mean function: m(x) = E[f(x)]
e Covariance function: k(x,x’) = E[(f(x) — m(x))(f(x") — m(x"))]

We have data points X = [x{',...,x, ]" and are interested in their function values
F(X)=(f(x1),...,f(xn))".

A Gaussian process is a collection of random variables, any finite number of which
have joint Gaussian distribution.

f(x) is one such subset and has (prior) joint Gaussian distribution.

#
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Gaussian Process: Mean and Covariance

The mean function m
® The mean function m(-) encodes the a-priori expectation of the function.
¢ m(x) will dominate the inference result in case we have not yet observed data similar
to x.
e Typical choice: zero-centering the data: m(x) =0

The covariance function
® k(x,x’) measures similarity between x and x’ — similar data points have similar
function values.

® x is a Mercer kernel.
x=x) T (x=x)

207 a2 where o

® Typical choice: squared exponential kernel: x(x,x') = o
defines the height and ¢ the width of the kernel.

#
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Gaussian Process: Sampling from Prior

Same procedure as for multivariate Gaussians:
e Generate u € RP by drawing d samples from N(0, 1p).
e Perform Cholesky decomposition ¥ = LL".
e Compute y = u + Lu where y ~ N(u, X).

10
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Gaussian Process: The Joint Distribution

We have training data X € RV*P | corresponding observations y = f(X), and test
data points X, € RV<*P for which we want to infer function values y, = f(X.).
The GP defines the following joint distribution

Py ¥l X, X)) = (;’) NN( [r;n(())(())] ’ [K ;fgl I’:} )

where
K = r(X, X) K. = k(X, X\) K. = k( X, Xi).

Typically, data points are corrupted by noise — our functions should not act as
interpolators. We therefore assume

y’ = f(xl) + € Where €~ N(O7 0’%)

#
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Gaussian Process: Inference

Inferring an unknown function value and its covariance follows from conditioning
multivariate Gaussians:

p(y:ly, X, X.) ~ N(p, Z)

Non-noisy case Noisy case
* p=m(X.)+ K K (y — m(X)) * p=m(X.)+ K (K+oal)7 (y — m(X))
* ¥ =K.—-K'KK. * 3 =K. — K/ (K+ o2l K.
A"

fla
/
K‘\\
_
Y
e

00 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
g
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Gaussian Process: Influence of Kernel Hyperparameters

=) T (x=x)
20

1=04,0=125

Uncertainty Quantification in ML
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Conformal Prediction

e Can we construct confidence intervals for predictions? Yes!
® Want a function ~y(-) that takes in a sample and maps it to a prediction set.
e (lassification: return a set of classes: v: X — C with C C .
® Regression: return a prediction range: v : X — [a, b] with a,b € R, a < b.
® We want to find 7(-) such that the prediction set contains the true label y with
high probability (at significance level «):

plyen(x))=21-a

fox fox gray rain fox
: 1 bucket, marmot, i mink, weasel, beaver, polecat
{ squirrel squirrel, fox, ST warce 0.30 © STEEST T MR T TS
0.99 - N

— https://arxiv.org/abs/2107.07511
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Conformal Prediction: Adaptive Prediction Sets

® Desiderata for y(-): small for easy samples, large for hard samples.

® Assume access to a validation set Dy, = {(x,-,y,-)}f\ial'.

1) Get score of correct class
For each (xi, yi) € Dyai
compute the consumed prob.
mass until correct class.

si= 1 fo(x);

O .

sorted softmax scores

2) Get 1 — « quantile
For {s1,...,sn,,} sort
list and compute desired
quantile § at index
[(Ny+1)(1=)]

val

3) Form prediction sets
For a new data point x get
sorted softmax probabilities
and add classes to prediction

until § is reached.

c3
A

v(x) ={c3,c7} at a.
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Selective Prediction

Selective prediction introduces a rejection class | via gating mechanism.

Goal: Derive a selection function g : X — R which, given an acceptance threshold 7,
determines whether a model f : X — ) should predict on a data point x.

f(x) gx)>7
1 otherwise.

(f.g)(x) = {

The performance of a selective classifier (f, g) on a dataset D is assessed based on
® the coverage of (f,g), i.e. what fraction of points we predict on; and
e the selective utility of (f, g) on the points it accepts.

cov(f,g):‘{x:g|(5|)>7}| wil(fg)= > u(f(x),y)

{(x,y):g(x)>7}
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Anomaly / Out-of-Distribution Sample Detection

® Selective prediction identifies hard-to-classify examples within the distribution.

® But what about examples that are completely outside of the known distribution?

) ° Q
o 2 ,
e ° o)
® p®
[9)
° 4
(0] (@)

Expose model to OOD points during
training to regularize predictions.

® o
e ¢
4
Determine OOD without knowledge
of the nature of anomalous points.
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Anomaly / Out-of-Distribution Sample Detection: Approaches

Mahalanobis Distance Nearest Neighbor Guiding

Assume each class is a Gaussian in output Check whether nearest neighbors in output
representation and compute min distance. representation are within a distance.

“

Max Softmax / Max Logit

Threshold either the maximum of the softmax or the pre-softmax / logit output.
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Open Problems & Discussion

Scalability Model Misspecification

® Bayesian models: computational If the model assumption is violated,
infeasibility or approximations. UQ methods can lure users into a
® Ensembles: need to train multiple false sense of security.

models from scratch.

Evaluation & Regulation
Distinguishing Types of Uncertainty o Ambiguity of ground truth

Correct error attribution is challeng- e Validation, certification, and eth-
ing in real world high-dimensional ical use of UQ methods for usage
data; relevant for decision-making. in highly critical applications.
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Recap: Basis Functions
® How is this useful? We can use linear methods on non-linear features to yield

non-linear decision boundaries and regression curves.
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— https://gregorygundersen.com/blog/2019/12/10/kernel-trick/
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Kernels: Motivation

Generalized Linear Models (GLM) Neural Network (NN)

® Fixed non-linear basis functions. ® Adaptive non-linear basis functions.

® |imited hypothesis space. ® Rich hypothesis space.

¢ Easy to optimize (convex). ® Hard to optimize (non-convex).

Towards Kernel Methods
® Feature space in GLM and NN needs to be explicitly constructed.
® Can we use a large (possibly infinite) set of fixed non-linear basis functions without
explicitly constructing this space?
® Yes, by using kernel methods!
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Kernel Methods

e Kernel methods are instance-based learners: they assign a weight 6; to any
training point x;.

® Predictions on new data points x' make use of a kernel function (-, -) measuring
the similarity of x’ with all points x; from the training set.

e Kernelized binary classification example:
n

y=sgn > _Oiyir(xi,x)
i=1

where
® y € {—1,41} is the label assigned to a data point x.
® ¢; is the weight for training example x;.
® x: X x X — R is the kernel function measuring similarity between x,x’ € R.
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The Kernel Trick

® Let ¢(-) be a set of not further specified basis functions mappings.
® Explicitly constructing a high-dimensional feature space is expensive.

® By using the kernel trick, we can implicitly perform operations in a
high-dimensional feature space.

® In many algorithms, this feature space only appears as a dot product
(@(x), 9(x')) = ¢(x) " $(X') of input pairs x, x'.
® We define these dot products as the kernel function

r(x,x') = (9(x), (x')) = p(x) " $(x')

which can also be thought of as a similarity function between x and x’.
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Dual Representation

® Recall the regularized linear regression objective:
£(0) = Z(e (xn) = ya)* + A19 0
® Finding optimal 6:

VoL(0) =D (8" ¢(xn) — yn)d(xn) + A0 =0

n=1

1L, -
3 2 (07 00u) — yn)dlxn)

an

® The weights 6 can be written as a linear combination of the training examples:

0= Z and(xn) where a = [al, e an] are called the dual parameters

. g . . &%
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Dual Representation

e Substituting @ back into linear regression y(x) = 87 ¢(x) yields:

N N N
0= z_; an¢(xn) }/(x) = z_:l an¢>(xn)Tq§(x) = Z_:l anﬁ;(xm X)

® The feature space only appears as a dot product.
® The kernel matrix, or gram matrix, K € RNXN collects kernel values in a
symmetric positive semi-definite matrix for all data points (Mercer's theorem):
T
Kij = r(xi, xj) = ¢(xi) ¢(x;)

® |f 2 kernel defines such a kernel matrix, then the kernel is valid.
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Popular Kernels

Polynomial Kernel

kpol(x,X') = (x' X +¢)?

Squared Exponential Kernel

(x ;Z:/)Q)

kse(x,X') = o exp (—
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Kernel Composition Rules

Let x1(x,x") and ka(x,x’) be valid kernels, then the following kernels are also valid:

® x(x,x") = cri(x,x’) Ve >0
® k(x,x') = f(x)r1(x,x")f(x) v
* k(x,x') = g(r1(x,x")) g is polynomial with coefficients > 0.

1(x,x") + Ka(x,x) kernel OR-ing
1(x, X" )k2(x, x") kernel AND-ing

Check out the Kernel Cookbook:
https://www.cs.toronto.edu/~duvenaud/cookbook/
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