#### Selected Topics in Uncertainty and Distributional Shifts Qualifying Oral Examination

Stephan Rabanser

stephan@cs.toronto.edu



University of Toronto Department of Computer Science



Vector Institute for Artificial Intelligence

January 17, 2022

#### About Me

- Educational Background:
  - B.Sc. and M.Sc. in Computer Science from Technical University of Munich, Germany.
  - Joined Nicolas' lab as a PhD student in September 2020.

#### • Industry/Internship Experience:

- Multiple research internships at Amazon / AWS AI Labs.
- Interned in Zack's lab @ CMU to work on my Master's thesis on distribution shift detection (published at NeurIPS 2019).
- **Research Interests**: Robustness, Safety, Reliability, Uncertainty, Causality, Generative Modeling, Representation Learning, Anomaly Detection, Distribution Shifts, Interpretability, Out-of-Distribution Sample Detection, Healthcare Applications.





#### Motivation

#### Machine Learning systems are becoming ubiquitous.



We need a thorough understanding of the robustness properties of ML algorithms to ensure safe deployment, especially in high-stakes decision-making systems.



Image credit: http://unsplash.com

#### Uncertainty Quantifiaction

- Standard supervised learning setup:
  - Dataset  $D_p = \{(x_i, y_i)\}_{i=1}^N$  where  $(x, y) \sim p$  on  $\mathcal{D} = \mathcal{X} \times \mathcal{Y}$  with  $x \in \mathcal{X}$ ,  $y \in \mathcal{Y}$ .
  - Learn a suitable estimation function  $h_{\theta} : \mathcal{X} \to \mathcal{Y}$  producing predictions  $\hat{y} = h_{\theta}(x)$ .
- We are interested in both a prediction  $\mathbb{E}[y|x]$  and the associated uncertainty Var[y|x].
- Use the Bayesian inference framework by modeling the likelihood  $p(y|x, \theta)$ , the prior  $p(\theta)$ , the posterior  $p(\theta|x, y)$ , and the predictive distribution p(y|x).

$$p(\theta|x,y) = \frac{p(y|x,\theta)p(\theta)}{\int p(y|x,\theta)p(\theta)d\theta} \qquad p(y|x) = \int p(y|x,\theta)p(\theta|x,y)d\theta$$

 Approximate p(θ|x, y) via Variational Inference [BCKW15], Markov Chain Monte Carlo [WRV<sup>+</sup>20], Deep Ensembles [LPB17], and Monte Carlo Dropout.



## Weight Uncertainty in Neural Networks [BCKW15]

• Goal: Minimize KL divergence between the Gaussian variational posterior  $q(\theta|w)$  and the true posterior  $p(\theta|x, y)$ :

 $\min_{w} \mathsf{KL}[q(\theta|w)||p(\theta|x,y)]$ 

• Yields variational free energy cost function:

 $\mathcal{F}(\theta, x, y) := \mathsf{KL}[q(\theta|w)||p(\theta)] - \mathbb{E}_{q(\theta|w)}[\log p(y|x, \theta)]$ 

• Approximate  ${\mathcal F}$  using unbiased MC samples:

$$\mathcal{F}(\theta, x, y) \approx \sum_{i} \log q(\theta_i | w) - \log p(\theta_i) - \log p(y | x, \theta_i)$$

• Motivate the usage of a scale-mixture prior:

$$p( heta) = \prod_j \pi \mathcal{N}( heta_j | 0, \sigma_1^2) + (1 - \pi) \mathcal{N}( heta_j | 0, \sigma_2^2)$$





## Weight Uncertainty in Neural Networks [BCKW15] (cont'd)

| Method                           | # Units/Lay | # Weights | Test<br>Error            |
|----------------------------------|-------------|-----------|--------------------------|
| SGD, no regularisation           | 800         | 1.3m      | 1.6%                     |
| SGD, dropout                     |             |           | $\approx 1.3\%$          |
| SGD, dropconnect                 | 800         | 1.3m      | $\mathbf{1.2\%^{\star}}$ |
| SGD                              | 400         | 500k      | 1.83%                    |
|                                  | 800         | 1.3m      | 1.84%                    |
|                                  | 1200        | 2.4m      | 1.88%                    |
| SGD, dropout                     | 400         | 500k      | 1.51%                    |
| -                                | 800         | 1.3m      | 1.33%                    |
|                                  | 1200        | 2.4m      | 1.36%                    |
| Bayes by Backprop, Gaussian      | 400         | 500k      | 1.82%                    |
|                                  | 800         | 1.3m      | 1.99%                    |
|                                  | 1200        | 2.4m      | 2.04%                    |
| Bayes by Backprop, Scale mixture | 400         | 500k      | 1.36%                    |
|                                  | 800         | 1.3m      | 1.34%                    |
|                                  | 1200        | 2.4m      | <b>1.32</b> %            |

'er





#### How Good is the Bayes Posterior in DNNs Really? [WRV<sup>+</sup>20]

- Empirical evidence shows that cooling the posterior,  $T \ll 1$ , improves predictive performance.
- A temperature T = 1 yields the true posterior while a temperature T = 0 corresponds to the maximum a-posteriori estimate (posterior sharpening).
- Rewrite the posterior distribution over  $\theta$ ,

 $p(\theta|x,y) \propto \exp(-U(\theta)/T)$ 

in terms of an energy function:

$$U(\theta) := -\sum_{i=1}^n \log p(y_i|x_i, \theta) - \log p(\theta),$$





- Where does this effect come from? Potential candidates: inference procedure, likelihood, prior.
- Prior:
  - The typical Gaussian prior  $p(\theta) = \mathcal{N}(0, I)$  is unintentionally informative as it produces concentrated class distributions.
  - It intensifies the cold posterior effect with increasing model depth and width.
  - Modifying the variance of the Gaussian was not found to mitigate this effect.







#### The Problem of Distribution Shift



Selected Topics in Uncertainty and Distributional Shifts 9/17



Faced with distribution shift we want to fail loudly. Our goals are three-fold:

- 1. Detect when distribution shift occurs from as few examples as possible;
- 2. Characterize the shift in a qualitative manner; and
- 3. Provide some guidance on whether the shift is harmful or not.







Selected Topics in Uncertainty and Distributional Shifts 11/17



| Test            | DR                                                        | 1                                                   | Number of sa                                        | amples from t                                | est<br>10,000<br>0.72<br>0.63<br>0.68<br>0.68<br>0.77 |  |  |  |
|-----------------|-----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------|-------------------------------------------------------|--|--|--|
| Test            | BR                                                        | 10                                                  | 100                                                 | 1,000                                        | 10,000                                                |  |  |  |
| KS + Bonf.      | NoRed<br><i>PCA</i><br>SRP<br>UAE<br>TAE<br><b>BBSD</b> s | 0.03<br>0.11<br>0.15<br>0.12<br>0.18<br><b>0.19</b> | 0.36<br>0.36<br>0.27<br>0.33<br>0.38<br><b>0.47</b> | 0.54<br>0.55<br>0.55<br>0.55<br>0.55<br>0.70 | 0.72<br>0.63<br>0.68<br>0.77<br>0.69<br>0.79          |  |  |  |
| $\chi^2$<br>Bin | BBSDh<br>Classif                                          | 0.03<br>0.01                                        | 0.22<br>0.21                                        | 0.46<br>0.51                                 | <u>0.57</u><br><u>0.67</u>                            |  |  |  |
| DMM             | NoRed<br>PCA<br>SRP<br><b>UAE</b><br>TAE<br>BBSDs         | 0.14<br>0.15<br><i>0.12</i><br>0.20<br>0.18<br>0.16 | 0.28<br>0.38<br>0.31<br>0.43<br>0.38<br>0.35        | 0.55<br>0.55<br>0.54<br>0.61<br>0.59<br>0.50 | -<br>-<br>-<br>-<br>-                                 |  |  |  |





Selected Topics in Uncertainty and Distributional Shifts 12/17

### Evaluating Predictive Uncertainty Under Shift [OFR+19]

Common misbelief: Current uncertainty quantification and calibration techniques are robust under distribution shift.

Methods for probabilistic deep learning:

- Maximum softmax probability
- Temperature scaling
- Monte Carlo Dropout
- Deep Ensembles
- Stochastic Variational Inference
- Last Layer Dropout and Variational Inference

Uncertainty quality metrics:

- Negative Log Likelihood (NLL): Evaluates the quality of model uncertainty on some held out set
- Brier Score: Assesses the accuracy of predicted probabilities.
- Expected Calibration Error (ECE): Measures the correspondence between predicted probabilities and empirical accuracy



## Evaluating Predictive Uncertainty Under Shift [OFR<sup>+</sup>19] (cont'd)

- Increasing the perturbation strength deteriorates both accuracy and uncertainty metrics.
- Post-hoc calibration on an iid validation set does not lead to (and might even hurt) well-calibrated predictions on OOD data.
- Deep Ensembles perform comparatively well, VI-based methods have mixed results.
- The results also show that the relative ranking of methods is mostly consistent throughout the experiments.



Selected Topics in Uncertainty and Distributional Shifts 14/17



### Evaluating Predictive Uncertainty Under Shift [OFR<sup>+</sup>19] (cont'd)



Selected Topics in Uncertainty and Distributional Shifts 15/17



#### Conclusion

#### Uncertainty

- Current State:
  - Theoretical requirements are well understood.
  - A lot of approximate techniques exist.

#### • Open Problems:

- Properly calibrated uncertainty is expensive, requiring approximations.
- Inductive biases of current methods need more rigorous understanding.

#### Distribution Shifts

- Current State:
  - Detection is often possible without strong assumptions.
  - Correction is possible under assumptions.

#### • Open Problems:

- Characterization, quantification, and correction under milder assumptions are mostly unsolved.
- Deep connection with OOD approaches is needed.

#### OOD Detection

- Current State:
  - Multiple promising techniques have been proposed.
  - Strong performance on stark differences.

#### • Open Problems:

- Many methods are supervised, requiring explicit access to OOD data.
- Empirical evaluation mostly focusses on synthetic perturbations.





# Thanks! :)

#### References I

- Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra, Weight uncertainty in neural network, International Conference on Machine Learning, PMLR, 2015, pp. 1613–1622.
- Nicholas Frosst, Nicolas Papernot, and Geoffrey Hinton, *Analyzing and improving representations with the soft nearest neighbor loss*, International Conference on Machine Learning, PMLR, 2019, pp. 2012–2020.
- Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson, *Why normalizing flows fail to detect out-of-distribution data*, arXiv preprint arXiv:2006.08545 (2020).
- Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin, *A simple unified framework for detecting out-of-distribution samples and adversarial attacks*, Advances in neural information processing systems **31** (2018).





#### References II

- Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell, *Simple and scalable predictive uncertainty estimation using deep ensembles*, Advances in neural information processing systems **30** (2017).
- David Madras and Richard Zemel, *Identifying and benchmarking natural out-of-context prediction problems*, Thirty-Fifth Conference on Neural Information Processing Systems, 2021.
- Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan, *Do deep generative models know what they don't know?*, arXiv preprint arXiv:1810.09136 (2018).
- Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua V Dillon, Balaji Lakshminarayanan, and Jasper Snoek, *Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift*, arXiv preprint arXiv:1906.02530 (2019).

Selected Topics in Uncertainty and Distributional Shifts 19/17



- Nicolas Papernot and Patrick McDaniel, *Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning*, arXiv preprint arXiv:1803.04765 (2018).
- Stephan Rabanser, Stephan Günnemann, and Zachary C Lipton, *Failing loudly: An empirical study of methods for detecting dataset shift*, arXiv preprint arXiv:1810.11953 (2018).
- Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin, *How good is the bayes posterior in deep neural networks really?*, arXiv preprint arXiv:2002.02405 (2020).

Selected Topics in Uncertainty and Distributional Shifts 20/17



#### Backup

# Weight Uncertainty in Neural Networks [BCKW15] (cont'd)

#### Training procedure

- 1. Sample  $\epsilon \sim \mathcal{N}(0, I)$ .
- 2. Compute weight  $\theta_i = \mu + \log(1 + \exp(\rho)) \cdot \epsilon$ .
- 3. Collect variational params in  $w = (\mu, \rho)$ .
- 4. Compute approximation of  $\mathcal{F}$ .
- 5. Update w using gradients of  $\mathcal{F}$  wrt w.



#### Uncertainty Estimation using Deep Ensembles [LPB17]

- 1. Maximization of a proper scoring rule  $S(p,q) = \mathbb{E}[S(p,(x,y))]$  for a scoring function S(p,(x,y)) ensuring that  $S(p,q) \le S(q,q)$  with equality iff p(y|x) = q(y|x).
- 2. Employ adversarial training to smooth the predictive distribution.
- 3. Repeat process *M*-many times to yield an ensemble.

$$p(y|x) = \frac{1}{M} \sum_{m=1}^{M} p(y|x, \theta_m)$$

Approximate p(y|x) as Gaussian for ease of computing quantiles:

$$p(y|x) pprox rac{1}{M} \sum_m \mathcal{N}ig( \mu_{ heta_m}(x), \sigma^2_{ heta_m}(x) ig)$$

with  $\mu_*(x) = \frac{1}{M} \sum_m \mu_{\theta_m}(x)$  and  $\sigma^2_*(x) = \frac{1}{M} \sum_m \left(\sigma^2_{\theta_m}(x) + \mu^2_{\theta_m}(x)\right) - \mu^2_*(x)$ .

Selected Topics in Uncertainty and Distributional Shifts 23/17



#### Uncertainty Estimation using Deep Ensembles [LPB17] (cont'd)









 $\mathsf{NLL} + \mathsf{Adv}$ 

Deep Ensembles







Selected Topics in Uncertainty and Distributional Shifts 24/17

How Good is the Bayes Posterior in DNNs Really? [WRV<sup>+</sup>20] (cont'd)

- Inference procedure:
  - Sampling θ ~ p(θ|x, y) is based on Langevin dynamics over the parameters θ.
  - Employ Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC) to approximate ∇<sub>θ</sub> U(θ).
  - Two potential sources of error:
    - Mini-batch noise over  $\nabla_{\theta} U(\theta)$ .
    - Discretization errors incurred during discrete-time approximations in the SDE dynamics.



#### Key findings:

- The SDE simulation provides accurate samples.
- SG-MCMC is unbiased.
- Multiple choices for the mini-batch size all show best performance at *T* < 1.</li>



UNIVERSITY OF

INSTITUTE



## How Good is the Bayes Posterior in DNNs Really? [WRV<sup>+</sup>20] (cont'd)

- Likelihood:
  - Batch-normalization, dropout, or data augmentation could alter the likelihood in potentially unintended ways.
  - An evaluation performed by adding or removing these techniques still shows the presence of the cold posterior effect, even with clean likelihoods.





#### Covariate Shift

$$[p(\boldsymbol{x}) \neq q(\boldsymbol{x}) \land p(y|\boldsymbol{x}) = q(y|\boldsymbol{x})] \Rightarrow p(y|\boldsymbol{x})p(\boldsymbol{x}) \neq q(y|\boldsymbol{x})q(\boldsymbol{x}) \Rightarrow p(\boldsymbol{x},y) \neq q(\boldsymbol{x},y)$$

#### Label Shift

$$[p(y) \neq q(y) \land p(\boldsymbol{x}|y) = q(\boldsymbol{x}|y)] \Rightarrow p(\boldsymbol{x}|y)p(y) \neq q(\boldsymbol{x}|y)q(y) \Rightarrow p(\boldsymbol{x},y) \neq q(\boldsymbol{x},y)$$

#### Concept Drift

$$[p(y|\mathbf{x}) \neq q(y|\mathbf{x}) \land p(\mathbf{x}) = q(\mathbf{x})] \Rightarrow p(y|\mathbf{x})p(\mathbf{x}) \neq q(y|\mathbf{x})q(\mathbf{x}) \Rightarrow p(\mathbf{x}, y) \neq q(\mathbf{x}, y)$$
$$[p(\mathbf{x}|y) \neq q(\mathbf{x}|y) \land p(y) = q(y)] \Rightarrow p(\mathbf{x}|y)p(y) \neq q(\mathbf{x}|y)q(y) \Rightarrow p(\mathbf{x}, y) \neq q(\mathbf{x}, y)$$

Selected Topics in Uncertainty and Distributional Shifts 27/17



No Reduction (NoRed  $\bigcirc$ ):



 To justify the use of any DR technique, our default baseline is to run tests on the original raw features. Principal Components Analysis (PCA  $\bigcirc$ ):



• Find an optimal orthogonal transf. matrix such that points are linearly uncorrelated after transf.



Sparse Random Projection (SRP  $\bigcirc$ ):



$$R_{ij} = \begin{cases} +\sqrt{\frac{v}{K}} & \text{with prob. } \frac{1}{2v} \\ 0 & \text{with prob. } 1 - \frac{1}{v} \\ -\sqrt{\frac{v}{K}} & \text{with prob. } \frac{1}{2v} \\ & \text{with } v = \frac{1}{\sqrt{D}} \end{cases}$$

Autoencoders (TAE  $\diamond$  and UAE  $\Box$ ):



• Encoder  $\phi: \mathcal{X} \to \mathcal{L}$ 

• Decoder 
$$\psi : \mathcal{L} \to \mathcal{X}$$
  
 $\phi, \psi = \arg \min_{\phi, \psi} \| \mathbf{X} - (\psi \circ \phi) \mathbf{X} \|^2$ 



Label Classifiers (BBSDs  $\triangleleft$  and BBSDh  $\triangleright$ ):



 Label classifier with softmax outputs (BBSDs <) or hard-thresholded predictions (BBSDh ▷). Domain Classifier (Classif  $\times$ ):



• Explicitly train a domain classifier to discriminate between data from source and target domains.



- Popular kernel-based technique for multivariate two-sample testing.
- Distinguish two distrib. based on their mean embeddings μ<sub>p</sub> and μ<sub>q</sub> in a reproducing kernel Hilbert space F:

$$\mathsf{MMD}(\mathcal{F}, p, q) = ||oldsymbol{\mu}_p - oldsymbol{\mu}_q||^2_{\mathcal{F}}$$



• Empirical estimate:



- Kernel:  $\kappa(\mathbf{x}_1, \mathbf{x}_2) = e^{-\frac{1}{\sigma} \|\mathbf{x}_1 \mathbf{x}_2\|^2}$
- Used with NoRed ○, PCA ○, SRP ○, TAE ◇, UAE □, and BBSDs ⊲.



- Test each of the *K* dimensions separately (instead of jointly) using the Kolmogorov-Smirnov (KS) test.
- Largest difference *S* of the cumulative density functions over all values *z*:



- Multiple hypothesis testing: we must subsequently combine the *p*-values from the *K*-many test.
- Problem: We cannot make strong assumptions about the (in)dependence among the tests.
- Solution: Bonferroni correction:
  - Does not assume (in)dependence.
  - Bounds the family-wise error rate, i.e. it is a conservative aggregation.
  - Rejects  $H_0$  if  $p_{\min} \leq \frac{\alpha}{K}$ .
- Used with NoRed ○, PCA ○, SRP ○, TAE ◇, UAE □, and BBSDs ⊲.



- Evaluate whether the freq. distr. of certain events observed in a sample is consistent with a particular theo. distr.
- Difference can be calculated as

$$X^{2} = \sum_{i=1}^{2} \sum_{j=1}^{C} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

with observed counts  $O_{ij}$  and expected counts  $E_{ij} = N_{sum} p_{i \bullet} p_{\bullet j}$  with •  $p_{i \bullet} = \frac{n_{i \bullet}}{N_{sum}} = \sum_{j=1}^{c} \frac{n_{ij}}{N_{sum}}$  and •  $p_{\bullet j} = \frac{n_{\bullet j}}{N_{sum}} = \sum_{i=1}^{r} \frac{n_{ij}}{N_{sum}}$ . • Under  $H_0$ ,  $X^2 \sim \chi^2_{C-1}$ .

| Sample | Cat 1           | ••• | Cat C           | $\sum$           |
|--------|-----------------|-----|-----------------|------------------|
| p      | n <sub>p1</sub> |     | n <sub>pC</sub> | n <sub>p●</sub>  |
| q      | $n_{q1}$        | ••• | n <sub>qC</sub> | n <sub>q●</sub>  |
| $\sum$ | $n_{\bullet 1}$ |     | n <sub>•C</sub> | N <sub>sum</sub> |



• Used with BBSDh ▷.



• Compare difference classifier accuracy (acc) on held-out data to random chance via a binomial test.

 $H_0: acc = 0.5$  vs  $H_A: acc > 0.5$ 

• Under *H*<sub>0</sub>, the acc follows a binomial distribution

 $\operatorname{acc} \sim \operatorname{Bin}(N_{\operatorname{hold}}, 0.5)$ 

where  $N_{\text{hold}}$  corresponds to the number of held-out samples.



Used with Classif ×.



- Recall: our detection framework does not detect outliers but rather aims at capturing top-level shift dynamics.
- We can not decide whether any given sample is in- or out-of-distribution.
- But: we can harness domain assignments from the domain classifier.
- It is easy to identify the exemplars which the domain classifier was most confident in assigning to the target domain.
- Other shift detectors compare entire distributions against each other.
- Identification of samples which if removed would lead to a large increase in the overall *p*-value was not successful.



- Distribution shifts can cause arbitrarily severe degradation in performance.
- In practice distributions shift constantly and often these changes are benign.
- Goal: distinguishing malignant shifts from benign shifts.
- Problem: although prediction quality can be assessed easily on source data, we are not able compute the target error directly without labels.
- Heuristic methods for approximating the target performance:
  - **Difference classifier assignments:** assess black-box model's accuracy on the labeled top anomalous samples (*implicit* shift characterization).
  - **Domain expert:** Get hints on the target accuracy by evaluating the classifier on held-out source data that has been *explicitly* perturbed by a function determined by a domain expert.



#### Family-Wise Error Rate (FWER)

The most stringent control is given by procedures controlling the FWER, which limits the probability of making at least one false positive, formally

 $FWER = P(V \ge 1) < \alpha$ 

where V is the total amount of false discoveries.

#### False Discovery Rate (FDR)

A less stringent but more powerful alternative to the FWER is the FDR, which limits the expected proportion of false positives, formally

$$\mathsf{FDR} = \mathbb{E}\bigg[\frac{V}{M}\bigg] < \alpha$$

where M is the total amount of discoveries.

Selected Topics in Uncertainty and Distributional Shifts 37/17



- Core experiments: synthetic shifts on MNIST and CIFAR-10 image datasets.
- Autoencoders: convolutional architecture with 3 convolutional layers.
- BBSD and Classif: ResNet-18 architecture.
- Network training (TAE ◇, BBSDs ⊲, BBSDh ▷, Classif ×): SGD with momentum in batches of 128 examples over 200 epochs with early stopping.
- Dimensionality reduction to K = 32 (PCA ○, SRP ○, UAE □, and TAE ◇),
  C = 10 (BBSDs <), and 1 (BBSDh ▷ and Classif ×).</li>
- Evaluate shift detection at a significance level of  $\alpha = 0.05$ .
- Shift detection performance is averaged over a total of 5 random splits.
- Randomly split the data into training, validation, and test sets and then apply a particular shift to the test set only.
- Evaluate the models with various amounts of samples from the test set  $s \in \{10, 20, 50, 100, 200, 500, 1000, 10000\}$ .



For each shift type (as appropriate) we explored three levels of shift intensity and various percentages of affected data  $\delta \in \{0.1, 0.5, 1.0\}$ .

- Adversarial (adv): We turn a fraction  $\delta$  of samples into adversarial samples via FGSM;
- Knock-out (ko): We remove a fraction  $\delta$  of samples from class 0, creating class imbalance;
- Gaussian noise (gn): We corrupt covariates of a fraction  $\delta$  of test set samples by Gaussian noise with standard deviation  $\sigma \in \{1, 10, 100\}$  (denoted *s*\_*gn*, *m*\_*gn*, and *l*\_*gn*);
- Image (img): We also explore more natural shifts to images, modifying a fraction δ of images with combinations of random rotations {10, 40, 90}, (x, y)-axis-translation percentages {0.05, 0.2, 0.4}, as well as zoom-in percentages {0.1, 0.2, 0.4} (denoted s\_img, m\_img, and l\_img);
- Image + knock-out (m<sub>-</sub>img+ko): We apply a fixed medium image shift with δ<sub>1</sub> = 0.5 and a variable knock-out shift δ;

Selected Topics in Uncertainty and Distributional Shifts 39/17



- Only-zero + image (oz+m\_img): Here, we only include images from class 0 in combination with a variable medium image shift affecting only a fraction δ of the data;
- **Original splits**: We evaluate our detectors on the original source/target splits provided by the creators of MNIST, CIFAR-10, Fashion MNIST, and SVHN datasets (assumed to be i.i.d.);
- Real shift datasets:
  - Domain adaptation from MNIST (source) to USPS (target).
  - COIL-100 dataset where images between 0° and 175° are sampled by the source and images between 180° and 355° are sampled by the target distribution.



NoRed PCA

SPP

TAR

 $10^{3}$ 

BBSD BBSD Classif





(c) Top different.



Top similar. (f)



Selected Topics in Uncertainty and Distributional Shifts 41/17

Table: Detection accuracy for small, medium, and large simulated shifts and low (10%), medium (50%), and high (100%) percentages of perturbed target samples on MNIST and CIFAR-10. Reported accuracy values are results of the best DR technique (univariate: BBSDs, multivariate: average of UAE and TAE). <u>Underlined</u> entries indicate accuracy values > 0.5.

| Test    | Intensity                |                      |                             | ٩                           | umber of samples from test  |                             |                                    |                                    |                                         |
|---------|--------------------------|----------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------|------------------------------------|-----------------------------------------|
|         | intensity                | 10                   | 20                          | 50                          | 100                         | 200                         | 500                                | 1,000                              | 10,000                                  |
| ariate  | Small<br>Medium<br>Large | 0.00<br>0.14<br>0.32 | 0.00<br>0.21<br><u>0.54</u> | 0.14<br>0.39<br><u>0.78</u> | 0.14<br>0.38<br><u>0.82</u> | 0.18<br>0.42<br><u>0.83</u> | 0.36<br><u>0.57</u><br><u>0.92</u> | 0.40<br><u>0.66</u><br><u>0.96</u> | $\frac{0.54}{0.76}\\ \frac{1.00}{0.00}$ |
| Univ    | 10%                      | 0.11                 | 0.15                        | 0.24                        | 0.25                        | 0.28                        | 0.44                               | 0.54                               | 0.66                                    |
|         | 50%                      | 0.14                 | 0.28                        | <u>0.52</u>                 | <u>0.53</u>                 | <u>0.60</u>                 | <u>0.68</u>                        | 0.72                               | 0.85                                    |
|         | 100%                     | 0.26                 | 0.41                        | <u>0.61</u>                 | <u>0.64</u>                 | <u>0.70</u>                 | <u>0.82</u>                        | 0.84                               | 0.86                                    |
| variate | Small                    | 0.11                 | 0.11                        | 0.12                        | 0.14                        | 0.20                        | 0.23                               | 0.33                               | -                                       |
|         | Medium                   | 0.11                 | 0.19                        | 0.23                        | 0.27                        | 0.32                        | 0.42                               | 0.44                               | -                                       |
|         | Large                    | 0.34                 | 0.45                        | <u>0.57</u>                 | <u>0.68</u>                 | <u>0.72</u>                 | <u>0.82</u>                        | <u>0.93</u>                        | -                                       |
| Multi   | 10%                      | 0.12                 | 0.13                        | 0.21                        | 0.26                        | 0.27                        | 0.31                               | 0.44                               | -                                       |
|         | 50%                      | 0.19                 | 0.27                        | 0.41                        | 0.41                        | 0.47                        | <u>0.57</u>                        | <u>0.60</u>                        | -                                       |
|         | 100%                     | 0.29                 | 0.41                        | 0.44                        | <u>0.53</u>                 | <u>0.60</u>                 | <u>0.70</u>                        | <u>0.78</u>                        | -                                       |

Selected Topics in Uncertainty and Distributional Shifts 42/17





Selected Topics in Uncertainty and Distributional Shifts 43/17







(c) Top different.



(f) Top similar.



Selected Topics in Uncertainty and Distributional Shifts 44/17

- The original splits from the MNIST dataset appear to exhibit a dataset shift.
- We observed that the top anomalous samples depicted the digit 6.
- This particular shift does not look significant to the human eye and is also declared harmless by our malignancy detector.



Selected Topics in Uncertainty and Distributional Shifts 45/17



# Deep k Nearest Neighbors [PM18]

- Perform a nearest neighbor analysis in each induced latent space.
- Legitimate inputs from a class should be close to points from the same class.
- 1. Obtain  $\{f_{\lambda}(x) \mid \lambda \in 1..l\}$ .
- 2. Find labels of nearest neighbors:  $\Omega_{\lambda} \leftarrow \{Y_i : i \in \Gamma\}.$
- 3. Compute calibration  $A = \{ \alpha(x, y) : (x, y) \in (X^c, Y^c) \}.$
- 4. Compute nonconformity  $\alpha(z,j) \leftarrow \sum_{\lambda \in 1..I} |i \in \Omega_{\lambda} : i \neq j|.$
- 5. Computer empirical *p*-value  $p_j(z) = \frac{|\{\alpha \in A: \alpha \ge \alpha(z,j)\}|}{|A|}.$







# Deep k Nearest Neighbors [PM18] (cont'd)





Selected Topics in Uncertainty and Distributional Shifts 47/17



#### Representations Using Soft Nearest Neighbor Loss [FPH19]

• Measure Entanglement via Soft Nearest Neighbor Loss:

$$l_{sn}(x, y, T) = -\frac{1}{b} \sum_{i \in 1..b} \log \left( \frac{\sum_{\substack{j \in 1..b \\ j \neq i \\ y_i = y_j}} e^{-\frac{||x_i - x_j||^2}{T}}}{\sum_{\substack{k \in 1..b \\ k \neq i}} e^{-\frac{||x_i - x_k||^2}{T}}} \right)$$

- Entangling lower layers leads to better generalization ability.
- Disentangling higher layers leads to better linear separation.

• Yielded representations are better suited to detect ambiguous/OOD data points as they are projected off the data manifold.





### Representations Using Soft Nearest Neighbor Loss [FPH19] (cont'd)



Selected Topics in Uncertainty and Distributional Shifts 49/17



#### p-DkNN



Selected Topics in Uncertainty and Distributional Shifts 50/17



### Deep Mahalanobis Detector [LLLS18]

• Parameterize each class in each hidden hidden layer via a multivariate Gaussian:

 $p(f_l(x)|y=c) = \mathcal{N}(f_l(x)|\mu_{c,l}, \Sigma_l)$ 

- Estimation of  $\hat{\mu}_{c,I} \approx \mu_{c,I}$  and  $\hat{\Sigma}_I \approx \Sigma_I$  via empirical mean and covariance.
- Mahalanobis score at layer *l* is then given by

$$M_{I}(x) = \max_{c} - (f_{I}(x) - \hat{\mu}_{c,I})^{\top} \hat{\Sigma}_{I}^{-1} (f_{I}(x) - \hat{\mu}_{c,I}).$$

• Pre-processing the inputs using adversarial-like perturbations:

$$\hat{x} = x + \epsilon \cdot \operatorname{sign}(\nabla_x M_L(x))$$

• Aggregate Mahalanobis score across all layers:

$$M(x) = \sum_{l} \alpha_{l} M_{l}(x).$$





## Deep Mahalanobis Detector [LLLS18] (cont'd)

| L. Pat             |              | Val                       | lidation on OOD sam       | ples                      | Validation on adversarial samples |                           |                           |
|--------------------|--------------|---------------------------|---------------------------|---------------------------|-----------------------------------|---------------------------|---------------------------|
| In-dist<br>(model) | OOD          | TNR at TPR 95%            | AUROC                     | Detection acc.            | TNR at TPR 95%                    | AUROC                     | Detection acc.            |
| (model)            |              | Maximum sof               | tmax / ODIN / Maha        | alanobis (ours)           | Maximum sof                       | tmax / ODIN / Maha        | alanobis (ours)           |
| CIEAR-10           | SVHN         | 40.2 / 86.2 / <b>90.8</b> | 89.9 / 95.5 / <b>98.1</b> | 83.2 / 91.4 / <b>93.9</b> | 40.2 / 70.5 / <b>89.6</b>         | 89.9 / 92.8 / <b>97.6</b> | 83.2 / 86.5 / <b>92.6</b> |
| (DenseNet)         | TinyImageNet | 58.9 / 92.4 / <b>95.0</b> | 94.1 / 98.5 / <b>98.8</b> | 88.5 / 93.9 / <b>95.0</b> | 58.9 / 87.1 / <b>94.9</b>         | 94.1 / 97.2 / 98.8        | 88.5 / 92.1 / <b>95.0</b> |
| (                  | LSUN         | 66.6 / 96.2 / <b>97.2</b> | 95.4 / 99.2 / <b>99.3</b> | 90.3 / 95.7 / <b>96.3</b> | 66.6 / 92.9 / <b>97.2</b>         | 95.4 / 98.5 / <b>99.2</b> | 90.3 / 94.3 / <b>96.2</b> |
| CIFAR-100          | SVHN         | 26.7 / 70.6 / <b>82.5</b> | 82.7 / 93.8 / <b>97.2</b> | 75.6 / 86.6 / <b>91.5</b> | 26.7 / 39.8 / <b>62.2</b>         | 82.7 / 88.2 / <b>91.8</b> | 75.6 / 80.7 / <b>84.6</b> |
| (DenseNet)         | TinyImageNet | 17.6 / 42.6 / <b>86.6</b> | 71.7 / 85.2 / <b>97.4</b> | 65.7 / 77.0 / <b>92.2</b> | 17.6 / 43.2 / <b>87.2</b>         | 71.7 / 85.3 / <b>97.0</b> | 65.7 / 77.2 / <b>91.8</b> |
| (2 0.000100)       | LSUN         | 16.7 / 41.2 / <b>91.4</b> | 70.8 / 85.5 / <b>98.0</b> | 64.9 / 77.1 / <b>93.9</b> | 16.7 / 42.1 / <b>91.4</b>         | 70.8 / 85.7 / <b>97.9</b> | 64.9 / 77.3 / <b>93.8</b> |
| SV/HN              | CIFAR-10     | 69.3 / 71.7 / <b>96.8</b> | 91.9 / 91.4 / <b>98.9</b> | 86.6 / 85.8 / <b>95.9</b> | 69.3 / 69.3 / <b>97.5</b>         | 91.9 / 91.9 / <b>98.8</b> | 86.6 / 86.6 / <b>96.3</b> |
| (DenseNet)         | TinyImageNet | 79.8 / 84.1 / <b>99.9</b> | 94.8 / 95.1 / <b>99.9</b> | 90.2 / 90.4 / <b>98.9</b> | 79.8 / 79.8 / <b>99.9</b>         | 94.8 / 94.8 / <b>99.8</b> | 90.2 / 90.2 / <b>98.9</b> |
| (Denselver)        | LSUN         | 77.1 / 81.1 / <b>100</b>  | 94.1 / 94.5 / <b>99.9</b> | 89.1 / 89.2 / <b>99.3</b> | 77.1 / 77.1 / <b>100</b>          | 94.1 / 94.1 / <b>99.9</b> | 89.1 / 89.1 / <b>99.2</b> |
| CIEAR 10           | SVHN         | 32.5 / 86.6 / <b>96.4</b> | 89.9 / 96.7 / <b>99.1</b> | 85.1 / 91.1 / <b>95.8</b> | 32.5 / 40.3 / <b>75.8</b>         | 89.9 / 86.5 / <b>95.5</b> | 85.1 / 77.8 / <b>89.1</b> |
| (RecNet)           | TinyImageNet | 44.7 / 72.5 / <b>97.1</b> | 91.0 / 94.0 / <b>99.5</b> | 85.1 / 86.5 / 96.3        | 44.7 / 69.6 / <b>95.5</b>         | 91.0 / 93.9 / <b>99.0</b> | 85.1 / 86.0 / <b>95.4</b> |
| (Resider)          | LSUN         | 45.4 / 73.8 / <b>98.9</b> | 91.0 / 94.1 / <b>99.7</b> | 85.3 / 86.7 / <b>97.7</b> | 45.4 / 70.0 / <b>98.1</b>         | 91.0 / 93.7 / <b>99.5</b> | 85.3 / 85.8 / <b>97.2</b> |
| CIEAD 100          | SVHN         | 20.3 / 62.7 / 91.9        | 79.5 / 93.9 / <b>98.4</b> | 73.2 / 88.0 / <b>93.7</b> | 20.3 / 12.2 / 41.9                | 79.5 / 72.0 / <b>84.4</b> | 73.2 / 67.7 / <b>76.5</b> |
| (DecNet)           | TinyImageNet | 20.4 / 49.2 / 90.9        | 77.2 / 87.6 / 98.2        | 70.8 / 80.1 / <b>93.3</b> | 20.4 / 33.5 / 70.3                | 77.2 / 83.6 / <b>87.9</b> | 70.8 / 75.9 / <b>84.6</b> |
| (Resider)          | LSUN         | 18.8 / 45.6 / <b>90.9</b> | 75.8 / 85.6 / <b>98.2</b> | 69.9 / 78.3 / <b>93.5</b> | 18.8 / 31.6 / <b>56.6</b>         | 75.8 / 81.9 / <b>82.3</b> | 69.9 / 74.6 / <b>79.7</b> |
| 0.4101             | CIFAR-10     | 78.3 / 79.8 / 98.4        | 92.9 / 92.1 / <b>99.3</b> | 90.0 / 89.4 / <b>96.9</b> | 78.3 / 79.8 / <b>94.1</b>         | 92.9 / 92.1 / <b>97.6</b> | 90.0 / 89.4 / <b>94.6</b> |
| SVHN<br>(DecNet)   | TinyImageNet | 79.0 / 82.1 / <b>99.9</b> | 93.5 / 92.0 / <b>99.9</b> | 90.4 / 89.4 / <b>99.1</b> | 79.0 / 80.5 / 99.2                | 93.5 / 92.9 / <b>99.3</b> | 90.4 / 90.1 / <b>98.8</b> |
| (ResNet)           | LSUN         | 74.3 / 77.3 / <b>99.9</b> | 91.6 / 89.4 / <b>99.9</b> | 89.0 / 87.2 / <b>99.5</b> | 74.3 / 76.3 / <b>99.9</b>         | 91.6 / 90.7 / <b>99.9</b> | 89.0 / 88.2 / <b>99.5</b> |

Selected Topics in Uncertainty and Distributional Shifts 52/17



# Deep Mahalanobis Detector [LLLS18] (cont'd)

| Model Dataset Score |           |                    | De    | tection o | tion of known attack Detection of unknown attack |       |             | <     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|---------------------|-----------|--------------------|-------|-----------|--------------------------------------------------|-------|-------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (model)             |           | Score              | FGSM  | BIM       | DeepFool                                         | CW    | FGSM (seen) | BIM   | DeepFool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CW    |
|                     |           | KD+PU              | 85.96 | 96.80     | 68.05                                            | 58.72 | 85.96       | 3.10  | 68.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53.21 |
|                     | CIFAR-10  | LID                | 98.20 | 99.74     | 85.14                                            | 80.05 | 98.20       | 94.55 | 70.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71.50 |
|                     |           | Mahalanobis (ours) | 99.94 | 99.78     | 83.41                                            | 87.31 | 99.94       | 99.51 | 83.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87.95 |
|                     |           | KD+PU              | 90.13 | 89.69     | 68.29                                            | 57.51 | 90.13       | 66.86 | 65.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58.08 |
| DenseNet            | CIFAR-100 | LID                | 99.35 | 98.17     | 70.17                                            | 73.37 | 99.35       | 68.62 | 69.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72.36 |
|                     |           | Mahalanobis (ours) | 99.86 | 99.17     | 77.57                                            | 87.05 | 99.86       | 98.27 | 75.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 86.20 |
|                     |           | KD+PU              | 86.95 | 82.06     | 89.51                                            | 85.68 | 86.95       | 83.28 | 84.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82.94 |
|                     | SVHN      | LID                | 99.35 | 94.87     | 91.79                                            | 94.70 | 99.35       | 92.21 | 80.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85.09 |
|                     |           | Mahalanobis (ours) | 99.85 | 99.28     | 95.10                                            | 97.03 | 99.85       | 99.12 | Junknown attack        1      DeepFool      CV        0      68.34      53.        15      70.86      71.        16      65.30      58.        12      69.68      72.        16      65.30      58.        12      69.68      72.        18      84.38      82.        11      80.14      85.        12      93.47      96.        16      76.80      56.        18      81.96      93.        15      57.78      73.        12      63.15      75.        18      81.95      90.        18      81.95      90.        18      81.95      90.        18      67.28      76.        38      67.28      76. | 96.95 |
| CI                  |           | KD+PU              | 81.21 | 82.28     | 81.07                                            | 55.93 | 83.51       | 16.16 | 76.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.30 |
|                     | CIFAR-10  | LID                | 99.69 | 96.28     | 88.51                                            | 82.23 | 99.69       | 95.38 | 71.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77.53 |
|                     |           | Mahalanobis (ours) | 99.94 | 99.57     | 91.57                                            | 95.84 | 99.94       | 98.91 | 78.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93.90 |
|                     |           | KD+PU              | 89.90 | 83.67     | 80.22                                            | 77.37 | 89.90       | 68.85 | 57.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73.72 |
| ResNet -            | CIFAR-100 | LID                | 98.73 | 96.89     | 71.95                                            | 78.67 | 98.73       | 55.82 | 83.42      87.9        65.30      58.0        69.68      72.3        75.63      86.2        84.38      82.9        80.14      85.0        93.47      96.9        76.80      56.3        71.86      77.5        78.06      93.9        57.78      73.7        63.15      75.0        81.95      90.9        84.30      67.8        67.90      76.8                                                                                                                                                                                                                                                         | 75.03 |
|                     |           | Mahalanobis (ours) | 99.77 | 96.90     | 85.26                                            | 91.77 | 99.77       | 96.38 | 81.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90.96 |
|                     |           | KD+PU              | 82.67 | 66.19     | 89.71                                            | 76.57 | 82.67       | 43.21 | 84.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67.85 |
|                     | SVHN      | LID                | 97.86 | 90.74     | 92.40                                            | 88.24 | 97.86       | 84.88 | 67.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76.58 |
|                     |           | Mahalanobis (ours) | 99.62 | 97.15     | 95.73                                            | 92.15 | 99.62       | 95.39 | 72.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 86.73 |

Selected Topics in Uncertainty and Distributional Shifts 53/17



## Do DGMs Know What They Don't Know? [NMT<sup>+</sup>18]

- Multiple DGMs have been found to assign higher likelihood to samples not from the training set.
- Paper investigates normalizing flows in particular.
- Deeper analysis on the change-of-variable objective finds that:
  - p(z) behaves as expected.
  - $\log \left| \frac{\partial f}{\partial x} \right|$  is larger for OOD data.
- Constant inputs achieve the highest likelihood.
- Neither
  - changing the flow to be volume preserving; nor
  - robustifying the likelihood assignment using ensembling

helps to mitigate the observed effect.

| g.     | Bits/Dimension |
|--------|----------------|
| ii     | onMNIST        |
|        | 2.902          |
|        | 2.958          |
|        | 1.833          |
| M      | INIST          |
|        | 1.262          |
| 5/     | Dimension      |
| F      | R-10           |
| .3     | 386            |
| .4     | 164            |
| .3     | 889            |
| -<br>Ъ | IN             |



2.057

SVHN\_Test



# Do DGMs Know What They Don't Know? [NMT<sup>+</sup>18] (cont'd)









#### (a) **PixelCNN**: FMNIST vs MNIST

#### (b) **VAE**: FMNIST vs MNIST



(c) CV-Glow

Likelihoods

#### (d) **VAE**: CIFAR-10 vs SVHN







43 CIFAR-10 TRAIN CIFAR-10 TRAIN CIFAR-10 TEST SVIN TEST 10



(d) Log-Likelihood vs Iter.





# Why NFs Fail to Detect OOD Data [KIW20]

- Flows learn local pixel correlations rather than semantic properties.
- Paper studies masking in coupling layers (*st*-networks).
- Typical masks preserve local structure and do not learn global patterns.
- Proposed fixes:
  - Changing masking strategy to horizontal mask and cycle mask.
  - Introducing a bottleneck to learn global structure for reconstruction.
- Training flows on high-level semantic features enables OOD detection.





## Why NFs Fail to Detect OOD Data [KIW20] (cont'd)



Selected Topics in Uncertainty and Distributional Shifts 57/17



# Identifying OOC Prediction Problems [MZ21]

- Progress in OOD detection is overestimated by using evidently OOD data in anomaly benchmarking setups.
- Unifying framework for Out-of-Context Prediction:
  - 1. Identify some existing auxiliary information *C*.
  - 2. Select a notion of OOC and define an OOC criterion by choosing a binary function  $\phi$  of *C*.
  - 3. Restrict the test set to those examples where  $\phi = 1$ . Optionally, restrict the training set to examples where  $\phi = 0$ .

- Binary decision of determining object presence within a scene using COCO dataset.
- Two criterions:
  - Presence/absence of frequently co-occurring objects: measured using overlap of bounding boxes
  - Unusual scene gist: measured using BERT embeddings of image captions
- Enables creation of two types of samples:
  - Hard positives
  - Hard negatives



# Identifying OOC Prediction Problems [MZ21] (cont'd)







(a) hard positive (CE)

(b) hard positive (Gist)





Selected Topics in Uncertainty and Distributional Shifts 59/17



#### Risk in Supervised Learning

Setup

- Dataset  $D_p = \{(x_i, y_i)\}_{i=1}^N$  where  $(x, y) \sim p$  over  $\mathcal{D} = \mathcal{X} \times \mathcal{Y}$  with  $x \in \mathcal{X}$ ,  $y \in \mathcal{Y}$ .
- Prediction function  $h_{\theta}(x) : \mathcal{X} \to \mathcal{Y}$  producing labels  $\hat{y} = h_{\theta}(x)$  with  $h_{\theta}(\cdot) \in \mathcal{H}$ .
- Loss function  $\ell(\hat{y}, y)$  measuring prediction quality of  $h_{\theta}(x)$ .

**Goal**: By employing a learning algorithm  $L : \mathcal{D} \to \mathcal{H}$  we want to produce a prediction function  $h_{\theta}(\cdot)$  performing well on unseen test data  $D'_{p} = \{(x_{j}, y_{j})\}_{j=1}^{M}$ ,  $(x, y) \sim p$ ,  $D'_{p} \cap D_{p} = \emptyset$  as measured by our loss function  $\ell(\cdot, \cdot)$ . (True) Risk

$$\mathcal{R}(h_{\theta}) := \mathbb{E}_{p(x,y)}[\ell(h_{\theta}(x), y)] = \int_{\mathcal{Y}} \int_{\mathcal{X}} p(x, y)\ell(h_{\theta}(x), y) dx dy$$



p(x, y) is typically not known or intractable to compute and as a result  $\mathcal{R}(h_{\theta})$  cannot be computed. But we can empirically approximate  $\mathcal{R}(h_{\theta})$  as  $\hat{\mathcal{R}}(h_{\theta})$  using samples from p(x, y) (i.e. using  $D_p$ ):

$$\mathcal{R}(h_{\theta}) \coloneqq \mathbb{E}_{p(x,y)}[\ell(h_{\theta}(x),y)] \qquad \qquad \hat{\mathcal{R}}(h_{\theta}) \coloneqq \frac{1}{N} \sum_{i=1}^{N} \ell(h_{\theta}(x_i),y_i)$$

. .

Due to the law of large numbers we expect an increasingly better approximation of  $\mathcal{R}(h_{\theta})$  by  $\hat{\mathcal{R}}(h_{\theta})$  as more samples are provided to the learning algorithm *L*:

$$\hat{\mathcal{R}}(h_{ heta}) pprox \mathcal{R}(h_{ heta}) \stackrel{N o \infty}{\longrightarrow} \mathcal{R}(h_{ heta}) \qquad rgmin_{h_{ heta} \in \mathcal{H}} \hat{\mathcal{R}}(h_{ heta}) pprox rgmin_{h_{ heta} \in \mathcal{H}} \hat{\mathcal{R}}(h_{ heta}) pprox rgmin_{h_{ heta} \in \mathcal{H}} \hat{\mathcal{R}}(h_{ heta})$$

Selected Topics in Uncertainty and Distributional Shifts 61/17



#### Revisiting our goal

**Goal**: By employing a learning algorithm  $L : \mathcal{D} \to \mathcal{H}$  we want to produce a prediction function  $h_{\theta}(\cdot)$  performing well on unseen test data  $D'_{p} = \{(x_{j}, y_{j})\}_{j=1}^{M}$ ,  $(x, y) \sim p$ ,  $D'_{p} \cap D_{p} = \emptyset$  as measured by our loss function  $\ell(\cdot, \cdot)$ .

#### A more realistic scenario

$$D_q' = \{(x_j, y_j)\}_{j=1}^M$$
  $(x, y) \sim q, \ 0 \leq d(p, q) \leq \delta$   $D_q' \cap D_p = \varnothing$ 

d(p,q) is a divergence measure between training distribution p and testing distribution q and is bounded by  $\delta$ .

Selected Topics in Uncertainty and Distributional Shifts 62/17



Instead of optimizing for good test time performance on the original distribution p, we optimize for good test time performance under the worst possible shift:

$$\mathcal{R}(h_{ heta},q)\coloneqq\max_{q\in\mathcal{Q}_p}\mathbb{E}_{q(x,y)}[\ell(h_{ heta}(x),y)]$$

 $Q_p$  is called our uncertainty set of data distributions. We constrain distribution realizations  $q \in Q_p$  to be absolutely continuous and bounded in divergence wrt p:

$$\mathcal{Q}_p = \{q \ll p \mid d(p,q) \leq \delta\}$$



#### Risk Minimization vs Distributionally Robust Optimization

**Risk Minimization** 

 $\operatorname*{arg\,min}_{h_{\theta} \in \mathcal{H}} \mathbb{E}_{p(x,y)}[\ell(h_{\theta}(x), y)]$ 

Distributionally Robust Optimization



Important: The distribution q that leads to the worst-case DRO loss does not necessarily correspond to be the distribution that maximizes d(p,q)!



#### Divergences Between Probability Distributions



Selected Topics in Uncertainty and Distributional Shifts 65/17



#### $\phi$ -divergences: Choices for $\phi(\cdot)$



Selected Topics in Uncertainty and Distributional Shifts 66/17



#### Application: ERM Generalization and Regularization

Recall the ERM definition:

$$\hat{\mathcal{R}}_{\lambda}(h_{ heta})\coloneqq rac{1}{N}\sum_{i=1}^{N}\ell(h_{ heta}(x_i),y_i) + \underbrace{\lambda\Omega( heta)}_{ ext{regularizet}}$$

By regularizing, we reduce overfitting on the sample distribution  $\hat{p}_N$  and enable generalization to p.

Different divergences lead to different regularization:

- $\chi^2$  penalizes  $\mathbb{V}_{\hat{p}_N}[\ell(h_{\theta}(x), y)]$
- Wasserstein penalizes  $||\nabla_x \ell(h_\theta(x), y)||$
- MMD penalizes  $||\ell(h_{\theta}(x), y)||_{\mathcal{F}}$







**Example setting**: You are building a predictive model for house prices based on square meters.

- p: square meters distribution in the inner city
- q<sub>S</sub>: square meters distribution in the city's suburbs
- q<sub>W</sub>: square meters distribution in the whole city
- q<sub>O</sub>: square meters distribution of another city

**Goal**: Generalize to the worst-case distribution within the city, i.e.,  $q_S$  and  $q_W$ , but not to  $q_O$ .







#### Unsupervised Contextual Anomaly Detection for Time Series



Selected Topics in Uncertainty and Distributional Shifts 69/17



#### Unsupervised Contextual Anomaly Detection for Time Series (cont'd)

|                                            | BasicEmb                                                                                                                        | ResEmbRegr                                                                                                                               | ContInvEmb                                                                      | ResTresh                                                                                                                                                   | Catch22                                                                                                                         | ResCatch22                                                                                                                               |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Synthetic<br>Pendulum<br>DevOps<br>Turbine | $\begin{array}{c} 0.512 \ (\pm \ 0.022) \\ 0.969 \ (\pm \ 0.013) \\ 0.535 \ (\pm \ 0.041) \\ 0.632 \ (\pm \ 0.015) \end{array}$ | $\begin{array}{c} \textbf{1.000} \ (\pm \ 0.000) \\ 0.951 \ (\pm \ 0.015) \\ 0.532 \ (\pm \ 0.036) \\ 0.725 \ (\pm \ 0.018) \end{array}$ | 0.999 (± 0.002)<br><b>0.980</b> (± 0.002)<br>0.587 (± 0.007)<br>0.736 (± 0.022) | $\begin{array}{c} \textbf{1.000} \ (\pm \ 0.000) \\ 0.510 \ (\pm \ 0.000) \\ \textbf{0.619} \ (\pm \ 0.000) \\ \textbf{0.845} \ (\pm \ 0.000) \end{array}$ | $\begin{array}{c} 0.494 \ (\pm \ 0.008) \\ 0.904 \ (\pm \ 0.000) \\ 0.573 \ (\pm \ 0.000) \\ 0.512 \ (\pm \ 0.000) \end{array}$ | $\begin{array}{c} \textbf{1.000} \ (\pm \ 0.000) \\ 0.891 \ (\pm \ 0.000) \\ 0.573 \ (\pm \ 0.000) \\ 0.680 \ (\pm \ 0.000) \end{array}$ |



Selected Topics in Uncertainty and Distributional Shifts 70/17



100

120 140

80