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Kernel Methods



Recap: Basis Functions

• Basis functions allow us to use non-linear feature transformations.
• We can specify them by hand (examples below), or learn them automatically using

a neural network.
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— Bishop, Pattern Recognition and Machine Learning
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Recap: Basis Functions

• How is this useful? We can use linear methods on non-linear features to yield
non-linear decision boundaries and regression curves.
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— https://gregorygundersen.com/blog/2019/12/10/kernel-trick/
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Kernels: Motivation

Generalized Linear Models (GLM)

• Fixed non-linear basis functions.

• Limited hypothesis space.

• Easy to optimize (convex).

Neural Network (NN)

• Adaptive non-linear basis functions.

• Rich hypothesis space.

• Hard to optimize (non-convex).

Towards Kernel Methods
• Feature space in GLM and NN needs to be explicitly constructed.

• Can we use a large (possibly infinite) set of fixed non-linear basis functions
without explicitly constructing this space?

• Yes, by using kernel methods!
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Kernel Methods

• Kernel methods are instance-based learners: they assign a weight θi to any
training point xi .

• Predictions on new data points x′ make use of a kernel function κ(·, ·) measuring
the similarity of x′ with all points xi from the training set.

• Kernelized binary classification example:

ŷ = sgn
n∑

i=1

θiyiκ(xi , x
′)

where
• y ∈ {−1,+1} is the label assigned to a data point x.
• θi is the weight for training example xi .
• κ : X × X → R is the kernel function measuring similarity between x, x′ ∈ R.
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The Kernel Trick

• Let φ(·) be a set of not further specified basis functions mappings.

• Explicitly constructing a high-dimensional feature space is expensive.

• By using the kernel trick, we can implicitly perform operations in a
high-dimensional feature space.

• In many algorithms, this feature space only appears as a dot product
〈φ(x), φ(x′)〉 = φ(x)>φ(x′) of input pairs x, x′.

• We define these dot products as the kernel function

κ(x, x′) = 〈φ(x), φ(x′)〉 = φ(x)>φ(x′)

which can also be thought of as a similarity function between x and x′.
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Dual Representation

• Recall the regularized linear regression objective:

L(θ) = 1

2

N∑
n=1

(θ>φ(xn)− yn)
2 +

λ

2
θ>θ

• Finding optimal θ:

∇θL(θ) =
N∑

n=1

(θ>φ(xn)− yn)φ(xn) + λθ = 0

θ = − 1

λ

N∑
n=1

(θ>φ(xn)− yn)︸ ︷︷ ︸
an

φ(xn)

• The weights θ can be written as a linear combination of the training examples:

θ =
N∑

n=1

anφ(xn) where a =
[
a1, . . . , an

]
are called the dual parameters
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Dual Representation

• Substituting θ back into linear regression y(x) = θ>φ(x) yields:

θ =
N∑

n=1

anφ(xn) y(x) =
N∑

n=1

anφ(xn)>φ(x) =
N∑

n=1

anκ(xn, x)

• The feature space only appears as a dot product.

• The kernel matrix, or gram matrix, K ∈ RN×N collects kernel values in a
symmetric positive semi-definite matrix for all data points (Mercer’s theorem):

Kij = κ(xi , xj) = φ(xi )
>φ(xj)

• If a kernel defines such a kernel matrix, then the kernel is valid.
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Popular Kernels

Polynomial Kernel

κPol(x, x
′) = (x>x′ + c)d
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Kernel Composition Rules

Let κ1(x, x′) and κ2(x, x′) be valid kernels, then the following kernels are also valid:

• κ(x, x′) = cκ1(x, x′) ∀c > 0

• κ(x, x′) = f (x)κ1(x, x′)f (x′) ∀f
• κ(x, x′) = g(κ1(x, x′)) g is polynomial with coefficients ≥ 0.

• κ(x, x′) = exp(κ1(x, x′))

• κ(x, x′) = κ1(x, x′) + κ2(x, x′) kernel OR-ing

• κ(x, x′) = κ1(x, x′)κ2(x, x′) kernel AND-ing

• κ(x, x′) = x>Ax′ A symmetric and p.s.d.

Check out the Kernel Cookbook:
https://www.cs.toronto.edu/~duvenaud/cookbook/

Kernels and Gaussian Processes 11/27

https://www.cs.toronto.edu/~duvenaud/cookbook/


Gaussian Processes



Recap: Multivariate Gaussian

• Handy tool for Bayesian inference on real-valued variables
• General multivariate PDF:

x ∼ ND(µ,Σ) =
1√

(2π)D |Σ|
e−

1
2
(x−µ)>Σ−1(x−µ)

• Some examples of D = 1 Gaussians
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Bayesian Parameter Estimation Example

Measure your heart rate at 8am

Prior to measuring
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— Example from http://videolectures.net/mlss2012_cunningham_gaussian_processes/
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Bayesian Parameter Estimation Example

Measure your heart rate at 8am and 9am

Prior to measuring
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Bayesian Parameter Estimation Example

Measuring your heart rate throughout the day
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GP Definition

A Gaussian process describes a distribution over functions (infinitely long vectors).

• Notation: f (x) ∼ GP(m(x), κ(x , x ′))

• Mean function: m(x) = E[f (x)]

• Covariance function: κ(x, x′) = E[(f (x)−m(x))(f (x′)−m(x′))]

We have data points X = [x>1 , . . . , x
>
n ]> and are interested in their function values

f (X ) = (f (x1), . . . , f (xn))>.

A Gaussian process is a collection of random variables, any finite number of which
have joint Gaussian distribution.

f (x) is one such subset and has (prior) joint Gaussian distribution.
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GP Mean and Covariance

The mean function m
• The mean function m(·) encodes the a-priori expectation of the function.

• m(x) will dominate the inference result in case we have not yet observed data
similar to x.

• Typical choice: zero-centering the data: m(x) = 0

The covariance function κ

• κ(x, x′) measures similarity between x and x′ → similar data points have similar
function values.

• κ is a Mercer kernel.

• Typical choice: squared exponential kernel: κ(x, x′) = σ2e−
(x−x′)>(x−x′)

2`2 where σ
defines the height and ` the width of the kernel.
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Drawing Samples From the GP

Same procedure as for multivariate Gaussians:

1. Generate u ∈ RD by drawing d samples from N (0, ID).

2. Perform Cholesky decomposition Σ = LL>.

3. Compute y = µ + Lu where y ∼ N (µ,Σ).
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The Joint Distribution

We have training data X ∈ RN×D , corresponding observations y = f (X ), and test
data points X∗ ∈ RN∗×D for which we want to infer function values y∗ = f (X∗).
The GP defines the following joint distribution

p(y , y∗|X ,X∗) =

(
y
y∗

)
∼ N

([
m(X )
m(X∗)

]
,

[
K + σ2nI K∗

K>∗ K∗∗

])
where

K = κ(X ,X ) K∗ = κ(X ,X∗) K∗∗ = κ(X∗,X∗).

Typically, data points are corrupted by noise → our functions should not act as
interpolators. We therefore assume

yi = f (xi ) + ε where ε ∼ N (0, σ2n).
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Inference with Gaussian Processes

Inferring an unknown function value and its covariance follows from conditioning
multivariate Gaussians:

p(y∗|y ,X ,X∗) ∼ N (µ,Σ)

Non-noisy case

• µ = m(X∗) + K>∗ K−1(y −m(X ))

• Σ = K∗∗ − K>∗ K−1K∗

Noisy case

• µ = m(X∗) + K>∗ (K + σ2
nI )−1(y −m(X ))

• Σ = K∗∗ − K>∗ (K + σ2
nI )−1K∗
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Influence of Kernel Hyperparameters

κ(x, x′) = σ2e−
(x−x′)>(x−x′)

2`2
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References I

Useful links

• https://distill.pub/2019/visual-exploration-gaussian-processes/

• https://thegradient.pub/gaussian-process-not-quite-for-dummies/

• http://www.infinitecuriosity.org/vizgp/

• https://mlg.eng.cam.ac.uk/tutorials/06/es.pdf

• https://xavierbourretsicotte.github.io/Kernel_feature_map.html

• https://cs229.stanford.edu/notes2021fall/cs229-notes3.pdf

• https://www.cs.toronto.edu/~hinton/csc2515/notes/gp_slides_fall08.pdf

• https://www.youtube.com/watch?v=nzSBvINmg28

• https://www.youtube.com/watch?v=exqpaqaPG2M
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Connection Between GPs & Bayesian Parameter Estimation

Maximum Likelihood Estimation (MLE)

We can pick the model that maximizes the data likelihood without restrictions.

arg max
θ

p(D|θ)

Maximum A-Posteriori Estimation (MAP)

We can incorporate prior information and regularize the model’s prediction by
introducing a prior p(θ) and reason about the posterior p(θ|D) using Bayes’ rule.

arg max
θ

p(θ|D) =
p(D|θ)p(θ)∫

θ p(D|θ)p(θ)dθ
∝ p(D|θ)p(θ)

Both MLE and MAP are point estimates of θ!
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Connection Between GPs & Bayesian Parameter Estimation (cont’d)

Bayesian Model Averaging

Use the predictions of all potential models and weight each model’s predictions by the
posterior. This gives rise to Bayesian Linear Regression / Bayesian Neural Networks.

p(y |x ,D) =

∫
θ
p(y |x ,θ)p(θ|D)dθ =

∫
θ
p(y |x ,θ)

p(D|θ)p(θ)∫
θ p(D|θ)p(θ)dθ

dθ

Gaussian Process (GP)

Under the assumption that both the prior distribution p(θ) and the likelihood p(D|θ)
are Gaussian, then the posterior predictive distribution p(y |x ,D) is also Gaussian. In
this case, we can model the predictive distribution directly (i.e., non-parametrically)
without explicitly performing model averaging.

p(y |x ,D) = N (µ,Σ) y = f (x) ∼ GP(m(x), κ(x , x ′))
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