Tutorial 5 – Kernels and Gaussian Processes CSC2541 Neural Net Training Dynamics – Winter 2022

Slides adapted from CSC2541 Scalable and Flexible Models of Uncertainty - Fall 2017

Stephan Rabanser

University of Toronto Department of Computer Science stephan@cs.toronto.edu

Vector Institute for Artificial Intelligence

June 29, 2022

Kernel Methods

Recap: Basis Functions

- Basis functions allow us to use non-linear feature transformations.
- We can specify them by hand (examples below), or learn them automatically using a neural network.

Recap: Basis Functions

• How is this useful? We can use linear methods on non-linear features to yield non-linear decision boundaries and regression curves.

- https://gregorygundersen.com/blog/2019/12/10/kernel-trick/

Generalized Linear Models (GLM)

- Fixed non-linear basis functions.
- Limited hypothesis space.
- Easy to optimize (convex).

Neural Network (NN)

- Adaptive non-linear basis functions.
- Rich hypothesis space.
- Hard to optimize (non-convex).

Towards Kernel Methods

- Feature space in GLM and NN needs to be explicitly constructed.
- Can we use a large (possibly infinite) set of fixed non-linear basis functions without explicitly constructing this space?
- Yes, by using kernel methods!

Kernel Methods

- Kernel methods are instance-based learners: they assign a weight θ_i to any training point x_i.
- Predictions on new data points x' make use of a kernel function κ(·, ·) measuring the similarity of x' with all points x_i from the training set.
- Kernelized binary classification example:

$$\hat{y} = \operatorname{sgn} \sum_{i=1}^{n} \theta_i y_i \kappa(\mathbf{x}_i, \mathbf{x}')$$

where

- $y \in \{-1, +1\}$ is the label assigned to a data point **x**.
- θ_i is the weight for training example \mathbf{x}_i .
- $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is the kernel function measuring similarity between $\mathbf{x}, \mathbf{x}' \in \mathbb{R}$.

- Let $\phi(\cdot)$ be a set of not further specified basis functions mappings.
- Explicitly constructing a high-dimensional feature space is expensive.
- By using the kernel trick, we can implicitly perform operations in a high-dimensional feature space.
- In many algorithms, this feature space only appears as a dot product $\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$ of input pairs \mathbf{x}, \mathbf{x}' .
- We define these dot products as the kernel function

$$\kappa(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$$

which can also be thought of as a similarity function between \mathbf{x} and \mathbf{x}' .

Dual Representation

• Recall the regularized linear regression objective:

$$\mathcal{L}(oldsymbol{ heta}) = rac{1}{2}\sum_{n=1}^{N}(oldsymbol{ heta}^{ op}\phi(\mathbf{x}_n)-y_n)^2 + rac{\lambda}{2}oldsymbol{ heta}^{ op}oldsymbol{ heta}$$

• Finding optimal θ :

$$\nabla_{\theta} \mathcal{L}(\theta) = \sum_{n=1}^{N} (\theta^{\top} \phi(\mathbf{x}_{n}) - y_{n}) \phi(\mathbf{x}_{n}) + \lambda \theta = 0$$
$$\theta = -\frac{1}{\lambda} \sum_{n=1}^{N} \underbrace{(\theta^{\top} \phi(\mathbf{x}_{n}) - y_{n})}_{a_{n}} \phi(\mathbf{x}_{n})$$

• The weights θ can be written as a linear combination of the training examples:

$$heta = \sum_{n=1}^{N} a_n \phi(\mathbf{x}_n)$$
 where $a = [a_1, \dots, a_n]$ are called the dual parameters

• Substituting θ back into linear regression $y(\mathbf{x}) = \theta^{\top} \phi(\mathbf{x})$ yields:

$$\boldsymbol{\theta} = \sum_{n=1}^{N} a_n \phi(\mathbf{x}_n) \qquad \qquad \boldsymbol{y}(\mathbf{x}) = \sum_{n=1}^{N} a_n \phi(\mathbf{x}_n)^\top \phi(\mathbf{x}) = \sum_{n=1}^{N} a_n \kappa(\mathbf{x}_n, \mathbf{x})$$

- The feature space only appears as a dot product.
- The kernel matrix, or gram matrix, K ∈ ℝ^{N×N} collects kernel values in a symmetric positive semi-definite matrix for all data points (Mercer's theorem):

$$\mathbf{K}_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j)$$

• If a kernel defines such a kernel matrix, then the kernel is valid.

Polynomial Kernel

$$\kappa_{\mathrm{Pol}}(\mathbf{x},\mathbf{x}') = (\mathbf{x}^{ op}\mathbf{x}'+c)^d$$

Squared Exponential Kernel

$$\kappa_{\mathrm{SE}}(\mathbf{x},\mathbf{x}') = \sigma^2 \exp\left(-rac{(\mathbf{x}-\mathbf{x}')^2}{2\ell^2}
ight)$$

Kernel Composition Rules

Let $\kappa_1(\mathbf{x}, \mathbf{x}')$ and $\kappa_2(\mathbf{x}, \mathbf{x}')$ be valid kernels, then the following kernels are also valid:

•
$$\kappa(\mathbf{x},\mathbf{x}') = c\kappa_1(\mathbf{x},\mathbf{x}') \quad \forall c > 0$$

•
$$\kappa(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})\kappa_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}') \quad \forall f$$

•
$$\kappa(\mathbf{x}, \mathbf{x}') = g(\kappa_1(\mathbf{x}, \mathbf{x}'))$$
 g is polynomial with coefficients ≥ 0 .

•
$$\kappa(\mathbf{x},\mathbf{x}') = \exp(\kappa_1(\mathbf{x},\mathbf{x}'))$$

•
$$\kappa(\mathbf{x}, \mathbf{x}') = \kappa_1(\mathbf{x}, \mathbf{x}') + \kappa_2(\mathbf{x}, \mathbf{x}')$$
 kernel OR-ing

•
$$\kappa(\mathbf{x}, \mathbf{x}') = \kappa_1(\mathbf{x}, \mathbf{x}')\kappa_2(\mathbf{x}, \mathbf{x}')$$
 kernel AND-ing

•
$$\kappa(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}'$$
 A symmetric and p.s.d.

Check out the Kernel Cookbook:

https://www.cs.toronto.edu/~duvenaud/cookbook/

Gaussian Processes

Recap: Multivariate Gaussian

- Handy tool for Bayesian inference on real-valued variables
- General multivariate PDF:

$$\mathbf{x} \sim \mathcal{N}_D(oldsymbol{\mu}, oldsymbol{\Sigma}) = rac{1}{\sqrt{(2\pi)^D |oldsymbol{\Sigma}|}} e^{-rac{1}{2} (\mathbf{x} - oldsymbol{\mu})^ op oldsymbol{\Sigma}^{-1} (\mathbf{x} - oldsymbol{\mu})}$$

• Some examples of D = 1 Gaussians

UNIVERSITY OF

Bayesian Parameter Estimation Example

Measure your heart rate at 8am

- Example from http://videolectures.net/mlss2012_cunningham_gaussian_processes/

UNIVERSITY OF

INSTITUTE

Bayesian Parameter Estimation Example

Measure your heart rate at 8am and 9am

Kernels and Gaussian Processes

15/27

Bayesian Parameter Estimation Example

Measuring your heart rate throughout the day

Kernels and Gaussian Processes

UNIVERSITY OF

INSTITUTE

\mathcal{GP} Definition

A Gaussian process describes a distribution over functions (infinitely long vectors).

- Notation: $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), \kappa(\mathbf{x}, \mathbf{x}'))$
- Mean function: $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$
- Covariance function: $\kappa(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) m(\mathbf{x}))(f(\mathbf{x}') m(\mathbf{x}'))]$

We have data points $\mathbf{X} = [\mathbf{x}_1^\top, \dots, \mathbf{x}_n^\top]^\top$ and are interested in their function values $f(\mathbf{X}) = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_n))^\top$.

A Gaussian process is a collection of random variables, any finite number of which have joint Gaussian distribution.

 $f(\mathbf{x})$ is one such subset and has (prior) joint Gaussian distribution.

GP Mean and Covariance

The mean function m

- The mean function $m(\cdot)$ encodes the a-priori expectation of the function.
- $m(\mathbf{x})$ will dominate the inference result in case we have not yet observed data similar to \mathbf{x} .
- Typical choice: zero-centering the data: $m(\mathbf{x}) = 0$

The covariance function κ

- κ(x, x') measures similarity between x and x' → similar data points have similar function values.
- κ is a Mercer kernel.
- Typical choice: squared exponential kernel: $\kappa(\mathbf{x}, \mathbf{x}') = \sigma^2 e^{-\frac{(\mathbf{x}-\mathbf{x}')^{\top}(\mathbf{x}-\mathbf{x}')}{2\ell^2}}$ where σ defines the height and ℓ the width of the kernel.

Drawing Samples From the GP

Same procedure as for multivariate Gaussians:

- 1. Generate $\boldsymbol{u} \in \mathbb{R}^{D}$ by drawing *d* samples from $\mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_{D})$.
- 2. Perform Cholesky decomposition $\boldsymbol{\Sigma} = \boldsymbol{L} \boldsymbol{L}^{\top}$.
- 3. Compute $m{y} = m{\mu} + m{L}m{u}$ where $m{y} \sim \mathcal{N}(m{\mu}, m{\Sigma}).$

Kernels and Gaussian Processes

19/27

The Joint Distribution

We have training data $\boldsymbol{X} \in \mathbb{R}^{N \times D}$, corresponding observations $\boldsymbol{y} = f(\boldsymbol{X})$, and test data points $\boldsymbol{X}_* \in \mathbb{R}^{N_* \times D}$ for which we want to infer function values $\boldsymbol{y}_* = f(\boldsymbol{X}_*)$. The GP defines the following joint distribution

$$p(\mathbf{y}, \mathbf{y}_* | \mathbf{X}, \mathbf{X}_*) = \begin{pmatrix} \mathbf{y} \\ \mathbf{y}_* \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(\mathbf{X}) \\ m(\mathbf{X}_*) \end{bmatrix}, \begin{bmatrix} \mathbf{K} + \sigma_n^2 \mathbf{I} & \mathbf{K}_* \\ \mathbf{K}_*^\top & \mathbf{K}_{**} \end{bmatrix} \right)$$

where

$$\mathbf{K} = \kappa(\mathbf{X}, \mathbf{X})$$
 $\mathbf{K}_* = \kappa(\mathbf{X}, \mathbf{X}_*)$ $\mathbf{K}_{**} = \kappa(\mathbf{X}_*, \mathbf{X}_*).$

Typically, data points are corrupted by noise \rightarrow our functions should not act as interpolators. We therefore assume

$$y_i = f(\mathbf{x}_i) + \epsilon$$
 where $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$.

Inference with Gaussian Processes

Inferring an unknown function value and its covariance follows from conditioning multivariate Gaussians:

 $p(oldsymbol{y}_*|oldsymbol{y},oldsymbol{X},oldsymbol{X}_*)\sim\mathcal{N}(oldsymbol{\mu},oldsymbol{\Sigma})$

Non-noisy case

•
$$\mu = m(X_*) + K_*^\top K^{-1}(y - m(X))$$

• $\boldsymbol{\Sigma} = \boldsymbol{K}_{**} - \boldsymbol{K}_{*}^{\top} \boldsymbol{K}^{-1} \boldsymbol{K}_{*}$

Noisy case

• $\mu = m(X_*) + K_*^{\top} (K + \sigma_n^2 I)^{-1} (y - m(X))$

•
$$\boldsymbol{\Sigma} = \boldsymbol{K}_{**} - \boldsymbol{K}_{*}^{ op} (\boldsymbol{K} + \sigma_n^2 \boldsymbol{I})^{-1} \boldsymbol{K}_{*}$$

Influence of Kernel Hyperparameters

$$\kappa(\mathbf{x}, \mathbf{x}') = \sigma^2 e^{-\frac{(\mathbf{x} - \mathbf{x}')^\top (\mathbf{x} - \mathbf{x}')}{2\ell^2}}$$

Kernels and Gaussian Processes

22/27

References I

Useful links

- https://distill.pub/2019/visual-exploration-gaussian-processes/
- https://thegradient.pub/gaussian-process-not-quite-for-dummies/
- http://www.infinitecuriosity.org/vizgp/
- https://mlg.eng.cam.ac.uk/tutorials/06/es.pdf
- https://xavierbourretsicotte.github.io/Kernel_feature_map.html
- https://cs229.stanford.edu/notes2021fall/cs229-notes3.pdf
- https://www.cs.toronto.edu/~hinton/csc2515/notes/gp_slides_fall08.pdf
- https://www.youtube.com/watch?v=nzSBvINmg28
- https://www.youtube.com/watch?v=exqpaqaPG2M

Books

- Christopher M Bishop and Nasser M Nasrabadi, *Pattern recognition and machine learning*, vol. 4, Springer, 2006.
- Alex J Smola and Bernhard Schölkopf, *Learning with kernels*, vol. 4, Citeseer, 1998.
- Christopher K Williams and Carl Edward Rasmussen, *Gaussian processes for machine learning*, vol. 2, MIT press Cambridge, MA, 2006.

Backup

Connection Between GPs & Bayesian Parameter Estimation

Maximum Likelihood Estimation (MLE)

We can pick the model that maximizes the data likelihood without restrictions.

 $rgmax_{oldsymbol{ heta}} p(\mathcal{D}|oldsymbol{ heta})$

Maximum A-Posteriori Estimation (MAP)

We can incorporate prior information and regularize the model's prediction by introducing a prior $p(\theta)$ and reason about the posterior $p(\theta|D)$ using Bayes' rule.

$$\arg\max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int_{\boldsymbol{\theta}} p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}} \propto p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

Both MLE and MAP are point estimates of θ !

Bayesian Model Averaging

Use the predictions of all potential models and weight each model's predictions by the posterior. This gives rise to Bayesian Linear Regression / Bayesian Neural Networks.

$$p(y|\mathbf{x}, \mathcal{D}) = \int_{\boldsymbol{\theta}} p(y|\mathbf{x}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta} = \int_{\boldsymbol{\theta}} p(y|\mathbf{x}, \boldsymbol{\theta}) \frac{p(\mathcal{D}|\boldsymbol{\theta}) p(\boldsymbol{\theta})}{\int_{\boldsymbol{\theta}} p(\mathcal{D}|\boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}} d\boldsymbol{\theta}$$

Gaussian Process (GP)

Under the assumption that both the prior distribution $p(\theta)$ and the likelihood $p(\mathcal{D}|\theta)$ are Gaussian, then the posterior predictive distribution $p(y|\mathbf{x}, \mathcal{D})$ is also Gaussian. In this case, we can model the predictive distribution directly (i.e., non-parametrically) without explicitly performing model averaging.

$$p(y|\mathbf{x}, \mathcal{D}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 $y = f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), \kappa(\mathbf{x}, \mathbf{x}'))$

