Tutorial 4: Bayesian Parameter Estimation CSC2541 Neural Net Training Dynamics – Winter 2022

Slides adapted from CSC2541: Scalable and Flexible Models of Uncertainty - Fall 2017

Stephan Rabanser

University of Toronto Department of Computer Science stephan@cs.toronto.edu

Vector Institute for Artificial Intelligence

June 20, 2022

Why model uncertainty?

- **Confidence calibration:** know how reliable a prediction is (e.g. so it can ask a human for clarification)
- Regularization: prevent your model from overfitting
- Ensembling: smooth your predictions by averaging them over multiple possible models
- Model selection: decide which of multiple plausible models best describes the data
- Sparsification: drop connections, encode them with fewer bits
- **Exploration:** decide which training examples are worth labeling (active learning), optimize an expensive black-box function (Bayesian optimization), estimating rewards from multi-armed bandits (reinforcement learning)
- **Robustness:** make good predictions when the data is either naturally perturbed or explicitly modified by an adversary

A Toy Example: Likelihood Function

- Motivating example: estimating the parameter of a biased coin
 - You flip a coin 100 times. It lands heads $N_H = 55$ times and tails $N_T = 45$ times.
 - What is the probability it will come up heads if we flip again?
- Model: observations x_i are independent and identically distributed (i.i.d.) Bernoulli random variables with parameter θ.
- The likelihood function is the probability of the observed data (the entire sequence of H's and T's) as a function of *θ*:

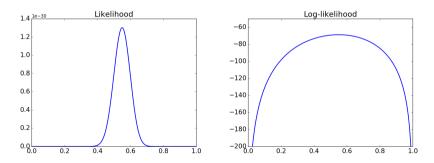
$$egin{aligned} \mathcal{L}(heta) &= \mathcal{p}(\mathcal{D}) = \prod_{i=1}^N heta^{ imes_i} (1- heta)^{1- imes_i} \ &= heta^{N_H} (1- heta)^{N_T} \end{aligned}$$

• N_H and N_T are sufficient statistics.

A Toy Example: Likelihood Function (cont'd)

• The likelihood is generally very small, so it's often convenient to work with log-likelihoods.

$$L(\theta) = \theta^{N_H} (1-\theta)^{N_T} \approx 7.9 \times 10^{-31}$$
$$\ell(\theta) = \log L(\theta) = N_H \log \theta + N_T \log(1-\theta) \approx -69.31$$



Bayesian Parameter Estimation

A Toy Example: Maximum Likelihood Estimation (MLE)

- Good values of θ should assign high probability to the observed data. This motivates the maximum likelihood criterion.
- Solve by setting derivatives to zero:

$$egin{aligned} &rac{\mathrm{d}\ell}{\mathrm{d} heta} = rac{\mathrm{d}}{\mathrm{d} heta} \left(N_H \log heta + N_T \log(1- heta)
ight) \ &= rac{N_H}{ heta} - rac{N_T}{1- heta} \end{aligned}$$

• Setting this to zero gives the maximum likelihood estimate:

$$\hat{\theta}_{\mathrm{ML}} = rac{N_H}{N_H + N_T},$$

• Normally there's no analytic solution, and we need to solve an optimization problem (e.g. using gradient descent).

A Toy Example: Maximum Likelihood Estimation (cont'd)

- Maximum likelihood has a pitfall: if you have too little data, it can overfit.
- E.g., what if you flip the coin twice and get H both times?

$$heta_{\mathrm{ML}}=rac{N_{H}}{N_{H}+N_{T}}=rac{2}{2+0}=1$$

- But even a fair coin has 25% chance of showing this result.
- Because it never observed T, it assigns this outcome probability 0. This problem is known as data sparsity.
- If you observe a single T in the test set, the likelihood is $-\infty$.

A Toy Example: Bayesian Parameter Estimation

- In maximum likelihood, the observations are treated as random variables, but the parameters are not.
- The Bayesian approach treats the parameters as random variables as well.
- To define a Bayesian model, we need to specify two distributions:
 - The prior distribution $p(\theta)$, which encodes our beliefs about the parameters before we observe the data
 - The likelihood $p(\mathcal{D} | \theta)$, same as in maximum likelihood
- When we update our beliefs based on the observations, we compute the posterior distribution using Bayes' Rule:

$$p(\theta \mid \mathcal{D}) = rac{p(\theta)p(\mathcal{D} \mid \theta)}{\int p(\theta')p(\mathcal{D} \mid \theta') \,\mathrm{d} heta'}.$$

• We rarely ever compute the denominator explicitly due to intractability.

A Toy Example: Prior Distribution

• Let's revisit the coin example. We already know the likelihood:

$$L(\theta) = p(\mathcal{D}) = \theta^{N_H} (1-\theta)^{N_T}$$

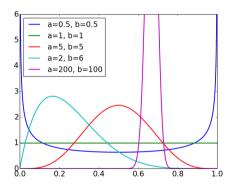
- It remains to specify the prior $p(\theta)$.
 - We can choose an uninformative prior, which assumes as little as possible. A reasonable choice is the uniform prior.
 - But our experience tells us 0.5 is more likely than 0.99. One particularly useful prior that lets us specify this is the beta distribution:

$$p(\theta; a, b) = rac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}.$$

• This notation for proportionality lets us ignore the normalization constant:

$$p(heta; a, b) \propto heta^{a-1}(1- heta)^{b-1}.$$

Beta distribution for various values of *a*, *b*:



- Some observations:
 - The expectation $\mathbb{E}[\theta] = a/(a+b)$.
 - The distribution gets more peaked when *a* and *b* are large.
 - The uniform distribution is the special case where *a* = *b* = 1.
- The main thing the beta distribution is used for is as a prior for the Bernoulli distribution.

A Toy Example: Posterior Distribution

• Computing the posterior distribution:

$$egin{aligned} & eta(heta) \propto eta(heta) p(\mathcal{D} \,|\, heta) \ & \propto \left[heta^{a-1} (1- heta)^{b-1}
ight] \left[heta^{N_H} (1- heta)^{N_T}
ight] \ & = heta^{a-1+N_H} (1- heta)^{b-1+N_T}. \end{aligned}$$

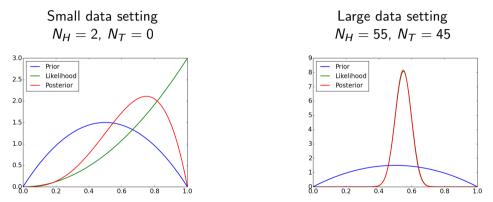
- This is just a beta distribution with parameters $N_H + a$ and $N_T + b$.
- The posterior expectation of θ is:

$$\mathbb{E}[\theta \mid \mathcal{D}] = \frac{N_H + a}{N_H + N_T + a + b}$$

- The parameters *a* and *b* of the prior can be thought of as pseudo-counts.
 - The reason this works is that the prior and likelihood have the same functional form. This phenomenon is known as conjugacy, and it's very useful.

A Toy Example: Posterior Distribution (cont'd)

Bayesian inference for the coin flip example:



When you have enough observations, the data overwhelm the prior.

A Toy Example: (Posterior) Predictive Distribution

- What do we actually do with the posterior?
- The posterior predictive distribution is the distribution over future observables given the past observations. We compute this by marginalizing out the parameter(s):

$$p(\mathcal{D}' | \mathcal{D}) = \int p(\boldsymbol{\theta} | \mathcal{D}) p(\mathcal{D}' | \boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{\theta}.$$
(1)

• For the coin flip example:

$$\begin{split} \theta_{\text{pred}} &= \Pr(\mathbf{x}' = H \,|\, \mathcal{D}) \\ &= \int p(\theta \,|\, \mathcal{D}) \Pr(\mathbf{x}' = H \,|\, \theta) \,\mathrm{d}\theta \\ &= \int \text{Beta}(\theta; N_H + \mathbf{a}, N_T + \mathbf{b}) \cdot \theta \,\mathrm{d}\theta \\ &= \mathbb{E}_{\text{Beta}(\theta; N_H + \mathbf{a}, N_T + \mathbf{b})}[\theta] \\ &= \frac{N_H + \mathbf{a}}{N_H + N_T + \mathbf{a} + \mathbf{b}}, \end{split}$$

(2)

A Toy Example: Maximum A-Posterior Estimation (MAP)

- Maximum a-posteriori (MAP) estimation: find the most likely parameter settings under the posterior
- This converts the Bayesian parameter estimation problem into a maximization problem

$$\begin{split} \hat{\theta}_{\text{MAP}} &= \arg\max_{\boldsymbol{\theta}} \ p(\boldsymbol{\theta} \mid \mathcal{D}) \\ &= \arg\max_{\boldsymbol{\theta}} \ p(\boldsymbol{\theta}, \mathcal{D}) \\ &= \arg\max_{\boldsymbol{\theta}} \ p(\boldsymbol{\theta}) \ p(\mathcal{D} \mid \boldsymbol{\theta}) \\ &= \arg\max_{\boldsymbol{\theta}} \ \log p(\boldsymbol{\theta}) + \log p(\mathcal{D} \mid \boldsymbol{\theta}) \end{split}$$

A Toy Example: Maximum A-Posterior Estimation (MAP) (cont'd)

• Joint probability in the coin flip example:

$$\begin{split} \log p(\theta, \mathcal{D}) &= \log p(\theta) + \log p(\mathcal{D} \mid \theta) \\ &= \operatorname{const} + (a-1) \log \theta + (b-1) \log (1-\theta) + N_H \log \theta + N_T \log (1-\theta) \\ &= \operatorname{const} + (N_H + a - 1) \log \theta + (N_T + b - 1) \log (1-\theta) \end{split}$$

• Maximize by finding a critical point

$$0 = \frac{\mathrm{d}}{\mathrm{d}\theta} \log p(\theta, \mathcal{D}) = \frac{N_H + a - 1}{\theta} - \frac{N_T + b - 1}{1 - \theta}$$

• Solving for
$$\theta$$
,

$$\hat{\theta}_{\mathrm{MAP}} = rac{N_{H} + a - 1}{N_{H} + N_{T} + a + b - 2}$$

A Toy Example: Convergence Properties

Comparison of estimates in the coin flip example:

	Formula	$N_H = 2, N_T = 0$	$N_H = 55, N_T = 45$
$\hat{ heta}_{ ext{ML}}$	$\frac{N_H}{N_H+N_T}$	1	$rac{55}{100} = 0.55$
$\theta_{\rm pred}$	$rac{N_H+a}{N_H+N_T+a+b}$	$rac{4}{6}pprox 0.67$	$rac{57}{104}pprox 0.548$
$\hat{\theta}_{\rm MAP}$	$rac{N_H+a-1}{N_H+N_T+a+b-2}$	$\frac{3}{4} = 0.75$	$rac{56}{102}pprox 0.549$

How many samples do we need for $\hat{\theta}_{ML}$ to be a good estimate of θ ? Use Hoeffding's Inequality for sampling complexity bound

$$p(|\hat{ heta}_{ ext{ML}} - heta| \geq arepsilon) \leq 2e^{-2Narepsilon^2}$$

where $N = N_H + N_T$.

Lessons learned

- Bayesian parameter estimation is more robust to data sparsity.
- Maximum likelihood is about optimization, while Bayesian parameter estimation is about integration.
- The Bayesian solution converges to the maximum likelihood solution as we observe more data.

Linear Regression as Maximum Likelihood

• We can give linear regression a probabilistic interpretation by assuming a Gaussian noise model:

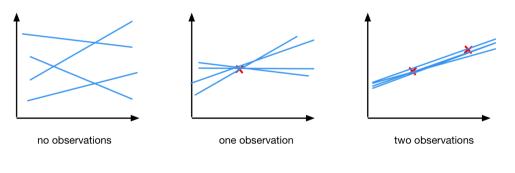
$$t \mid \mathbf{x} \sim \mathcal{N}(\mathbf{w}^{\top}\mathbf{x} + b, \ \sigma^2)$$

• Linear regression is just maximum likelihood under this model:

$$\frac{1}{N} \sum_{i=1}^{N} \log p(t^{(i)} | \mathbf{x}^{(i)}; \mathbf{w}, b) = \frac{1}{N} \sum_{i=1}^{N} \log \mathcal{N}(t^{(i)}; \mathbf{w}^{\top} \mathbf{x} + b, \sigma^2)$$
$$= \frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{(t^{(i)} - \mathbf{w}^{\top} \mathbf{x} - b)^2}{2\sigma^2} \right) \right]$$
$$= \operatorname{const} - \frac{1}{2N\sigma^2} \sum_{i=1}^{N} (t^{(i)} - \mathbf{w}^{\top} \mathbf{x} - b)^2$$

Bayesian Linear Regression: Intuition

- Bayesian linear regression considers various plausible explanations for how the data points were generated.
- It makes predictions using all possible regression weights, weighted by their posterior probability.



Bayesian Linear Regression: Setup

- Leave out the bias for simplicity
- **Prior distribution:** a broad, spherical (multivariate) Gaussian centered at zero:

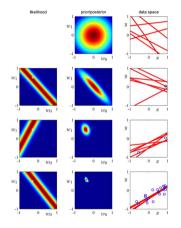
$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \nu^2 \mathbf{I})$$

• **Likelihood:** same as in the maximum likelihood formulation:

$$t \mid \mathbf{x}, \mathbf{w} \sim \mathcal{N}(\mathbf{w}^{ op} \mathbf{x}, \ \sigma^2)$$

• Posterior:

$$\begin{split} \mathbf{w} \, | \, \mathcal{D} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\ \boldsymbol{\mu} = \sigma^{-2} \boldsymbol{\Sigma} \mathbf{X}^\top \mathbf{t} \qquad \boldsymbol{\Sigma}^{-1} = \nu^{-2} \mathbf{I} + \sigma^{-2} \mathbf{X}^\top \mathbf{X} \end{split}$$



— Bishop, Pattern Recognition and Machine Learning

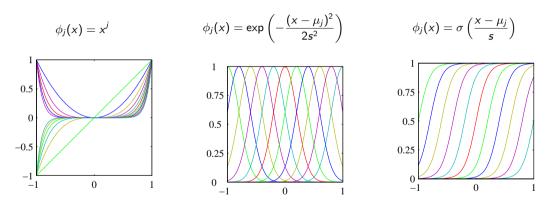
Posterior predictive distribution:

$$\begin{split} p(t \mid \mathbf{x}, \mathcal{D}) &= \int p(t \mid \mathbf{x}, \mathbf{w}) p(\mathbf{w} \mid \mathcal{D}) \, \mathrm{d}\mathbf{w} \\ &= \mathcal{N}(t \mid \boldsymbol{\mu}^{\top} \mathbf{x}, \sigma_{\mathrm{pred}}^{2}(\mathbf{x})) \\ \sigma_{\mathrm{pred}}^{2}(\mathbf{x}) &= \sigma^{2} + \mathbf{x}^{\top} \boldsymbol{\Sigma} \mathbf{x}, \end{split}$$

where μ and Σ are the posterior mean and covariance of Σ .

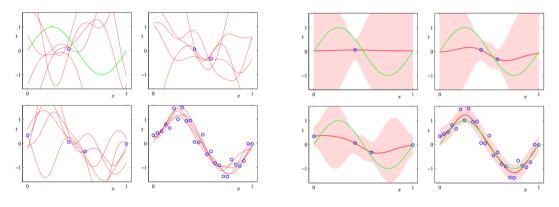
Bayesian Linear Regression: Non-Linearity via Basis Functions

• We can turn this into nonlinear regression using basis functions.



- Bishop, Pattern Recognition and Machine Learning

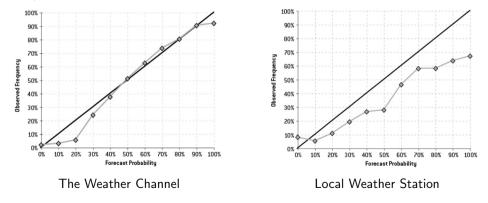
Bayesian Linear Regression: Predictive Uncertainty



- Bishop, Pattern Recognition and Machine Learning

Calibration

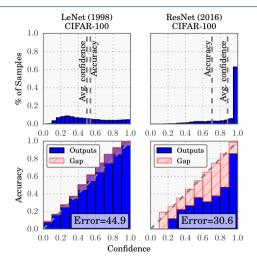
- Calibration: of the times your model predicts something with 90% confidence, is it right 90% of the time?
- Example: calibration of weather forecasts



UNIVERSITY O

NSTITUTE

- Most of our neural nets output probability distributions, e.g. over object categories. Are these calibrated?
- While more accurate, modern neural networks are overconfident in their decisions.

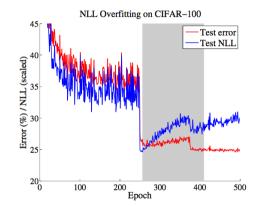


- Guo et al., 2017, On calibration of modern neural networks

- Suppose an algorithm outputs a probability distribution over targets, and gets a loss based on this distribution and the true target.
- A scoring rule is a numerical quantization of the calibration of a predictive distribution p(y|x). If the underlying true distribution over data points is denoted q(x, y), then the expected scoring rule is defined as $S(p, q) = \mathbb{E}_q[S(p, (x, y))]$ for a scoring function S(p, (x, y)).
- A proper scoring rule is a rule which ensures that $S(p,q) \le S(q,q)$ with equality iff p(y|x) = q(y|x).
- The canonical example is negative log-likelihood (NLL). If k is the category label, t is the indicator vector for the label, and y are the predicted probabilities,

$$L(\mathbf{y}, \mathbf{t}) = -\log y_k = -\mathbf{t}^\top (\log \mathbf{y})$$

• Calibration failures show up in the test NLL scores:



- Guo et al., 2017, On calibration of modern neural networks

- Guo et al. explored 7 different calibration methods, but the one that worked the best was also the simplest: temperature scaling.
- A classification network typically predicts $\sigma(\mathbf{z})$, where σ is the softmax function

$$\sigma(\mathbf{z})_k = \frac{\exp(z_k)}{\sum_{k'} \exp(z_{k'})}$$

and \mathbf{z} are called the logits.

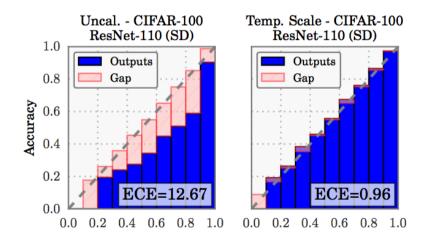
• They replace this with

 $\sigma(\mathbf{z}/T),$

where T is a scalar called the temperature.

- T is tuned to minimize the NLL on a validation set.
- Intuitively, because NLL is a proper scoring rule, the algorithm is incentivized to match the true probabilities as closely as possible.

• Before and after temperature scaling:



UNIVERSITY OF

INSTITUTE

- Christopher M Bishop and Nasser M Nasrabadi, *Pattern recognition and machine learning*, vol. 4, Springer, 2006.
- Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger, *On calibration of modern neural networks*, International Conference on Machine Learning, PMLR, 2017, pp. 1321–1330.
- Nate Silver, *The signal and the noise: Why so many predictions fail-but some don't*, Penguin, 2012.

