An Introduction to the Neural Tangent Kernel (NTK)

Stephan Rabanser stephan@cs.toronto.edu

/A

University of Toronto Vector Institute for
Department of Computer Science Artificial Intelligence

February 2, 2023

Recap: Linear Regression

® \We are given a dataset D = {(x;,y;)}"_; with x; € RP and y; € R.

® Goal: predict a response y from features x using a linear function.
® Model the relationship using the predictive function:

fw(x) = (w,x) = w ' x
[]

The quality of our fit is determined by a loss function:

n

Lu =5 0= fulx))

i=1
® We want to minimize the loss: min,, £,,. We can do this using gradient descent:

Wiyl = W — 77vw£w

Neural Tangent Kernel Introduction 2 gtV I\I(IESCTTI%TTE

Recap: Kernel Methods

® Linear relations are restrictive, interesting datasets have non-linear interactions!

Transform features into higher-dimensional space:

x €RP = ¢(x) eRF, K> D

Structure of prediction function stays the same: f,,(x) = w' ¢(x).

The model is linear in w but non-linear in x.
® As a result, the objective L, is still convex and solvable using gradient descent:
Lu= 130) = 13 (- wT o)) min £

w 2 1 w 1 2 1 1 w w

i=1 i=1

This is great! We have non-linear features but still a convex objective! However:

® The transformation function ¢(-) is fixed and needs to be tuned manually.
® The computation of the feature map ¢(x) € R¥ with K >> D can be expensive.

Neural Tangent Kernel Introduction 3 gorene V0 I\I(IESCTTI%TTE

Recap: Kernel Trick

® Many ML algorithms can be reformulated to feature space inner products:

K(x, x') = ($(x), p(x'))

® This inner product is called a kernel function (-, -) and can be thought of as a
similarity measure of two input vectors x and x’.
® Example kernels:
1\2
T 2 (x —x')

kol (X, ') = (x "X +) rse(x, x) = o exp <—2€2
® Collect all similarities in a postive semi-definite kernel matrix: K € R"™*" = 0.
® Algorithms can be "kernelized”: only rely on kernels instead of expl. feature maps.
[)

Are such kernels flexible enough? What about the computational concerns?

Neural Tangent Kernel Introduction 4 Frononto V' eTIToTE

Recap: Neural Networks

® \We don’'t want to define non-linear
transformations ourselves: we want
to learn them!

® Discover multiple (hierarchical)
feature spaces:

R? 5 R™ 5 R° - RP — .- — R¥

® The objective Ly, is not convex, yet
we still use gradient descent:

Ly = % . (vi—fw(x))? = %Z (YI_U(W/T . "U(WzTU(WlTXi)))> w=(Wy,...,W)

Neural Tangent Kernel Introduction 5 TR \7‘ I\I(IESCTTI%TTE

Understanding the Performance of Neural Nets: Central Questions

Neural networks empirically perform well, but their convergence and
generalization properties are hard to analyze.

Deep learning is poorly understood. Kernel methods on the other hand are based
on solid mathematical theory. Can we distill a neural network into a kernel?

It is a known result that at initialization time, a wide neural network is a
Gaussian process. Can we also describe the training process using a kernel?

Neural Tangent Kernel Introduction 6 gorene V0 I\I(IESCTTI%TTE

Deriving a Kernel from a Neural Network

® Assume a simple neural network with a single hidden layer and params w = (A, b):

® As discussed, the objective L, is no longer convex:

1o 1 1 < 2
— E , L)2 — = E L § . Ty.
£W — 5 (-y’ fW(x’)) - 2 <yl \/Ej_l bja(aj xl)>

2 4 -
i=1 i=1

Neural Tangent Kernel Introduction TR \7‘ I\I(IESCTTI%TTE

Deriving a Kernel from a Neural Network (cont'd)

n m 2
Lw= %Z(— fw (x, =3 Z (y, 1m Z bja(aij,-)>
i=1 j:l

® We can still minimize the objective £,, using full-batch gradient descent:

Wiyl = We — TZV Lw,

= W — 772()’: Wt X, VWf:Wzr(Xl')

variable during training
changes depending on w;

Under what circumstances does V, fu,(x;) not change much during training?

Neural Tangent Kernel Introduction 8 gorene V0 I\I(IESCTTI%TTE

Lazy Training

® Assume we initialize the weights randomly using a standard Gaussian: A(0,1).

® \We can observe the trajectory of the weights during training:

wo — Wi — W — ... — WT

Empirical Observation

When m is large (m — o0), parameters show stable evolution patterns (¢ — 0).

Lazy training

Neural Tangent Kernel Introduction 9 gorene V0 I\I(IESCTTI%TTE

Depiction of Lazy Training for Wide Neural Nets

Training loss

Relative change in norm of weights from initialization
— Wwidth 10
— width 100 030 — Width 10
2.0 —— Width 1000 —T— Width 100
—— Width 1000

025

1> 0.20
2 g
=3
S 1R o015
1.0 =E
H

0.10
05

0.05
0.0 0.00

0 200 400 600 800 1000 0 200 400 600 800 1000
Step Step (n)
(a) Loss evolution (b) Weight distance from origin
https://rajatvd.github.io/NTK/
. &
Neural Tangent Kernel Introduction 10 53 Unwmr o X7 VECTOR

* TORONTO INSTITUTE

https://rajatvd.github.io/NTK/

Neural Tangent Kernel: Approximating a Lazy Trajectory

® |f lazy training holds, then a first-order Taylor approximation of the function
around its initialization wy might be helpful:

fw(x) = fuy(x) + wa,,,,o(x)T(w —wy) + ...

T higher order
() Taylor terms

~ c+ ¢(X)T(w — wp)

/

vV
model is an affine func in w

Neural Tangent Kernel (NTK)

For the standard kernel definition x(x, x’) = (¢(x), ¢(x’)), use the gradient of
the neural network’s output evaluated at wy as the kernel function:

A(X) = Vi fur(x)

Neural Tangent Kernel Introduction 11 Frononto V' NoTTOTE

Computing the NTK for Our Toy Example

® Recall our simple neural network from before:

® Computing the Neural Tangent Kernel for this network:

TR (X, X') = K (%, X') + £ (x, ')

1 ¢ T T 1en o7 T
== Z bio'(a x)o'(a) x')xx' + p- Za(aj x)o(a; x')
i=1 j=1

"= E[b?0' (AT x)o' (AT x')xx'] + E[o(AT x)o (AT x')]

Neural Tangent Kernel Introduction 12 & TORONTO \7\ NoTTOTE

Analyzing Gradient Descent

® This kernel can directly be used in a kernel machine!
® \We can analyze further properties of neural network training using flow dynamics.

® Example: parameter gradient flow dynamics (n — 0):

Wiyl = We — nvwﬁwt

Wil — Wy VL
— wh~w;
n
th n—0

dt ~Vwlw

Can we use differential equations to analyze the evolution of various properties
of neural networks (weights, predictions, losses, etc. over time)?

Neural Tangent Kernel Introduction 13 Frononto V' NoTTOTE

Dynamics of Parameters and Predictions

Parameter Dynamics Predictions Dynamics

How do the parameters change over How do the predictions change over
the course of training? the course of training?
Assume L, = %Hfm — yH% Then: Approximate w/ NTK matrix KyTk:
vW‘CWt = VWth(th - -y) det = _vwf—r th
dt W dt
i =— VufyVufu (fu,—y)
t N————
F = _vwﬁwt NTK evaluated at w;
= —Vuwfuw(fw. — ¥) ~ —Knt(fw — y)
Neural Tangent Kernel Introduction 14 éﬂ)f{érﬁ’o ? TR e

ODE Solution for Residual Loss

® Under a simple residual loss, we can model the dynamics w/ linear ODE:

du

0= lw Y dt

~ —KnTkUu - u; = ug exp(—KnTkt)

® Ast— oo, u—0andfy, =Y.

® |n over-parameterized networks: KnTk = 0, i.e. smallest eigenvalue larger than Q!
® We can factorize the kernel matrix Kyt = Zf:l)\,-v,-v,.T with 0 < A1 < ... < Ag.
® Substituting this factorization back into the ODE:

k

-
u = uoHexp(—/\,-v,-v,- t)

i=1

[]

A1 governs the rate of convergence.

Neural Tangent Kernel Introduction 15 Frononto V' NoTTOTE

Summary & Open Questions

Summary of Neural Tangent Kernel

® Parameters hardly move from their initialization for m — oo.
NTK is defined as the gradient of the NN evaluated at init: V.,,,fJOVWfWO.

NTK is deterministic at initialization and constant during training.

Can be used in ODEs to study evolution of various quantities.

Open Questions

® Results from the NTK limit are not SOTA. Where does the gap come from?
® Results only hold for full-batch GD. What is the role of SGD?

® NTK results talk about convergence? What about performance?

® How can we use these training dynamics insights for trust?

Neural Tangent Kernel Introduction 16 Frononto V' NoTTOTE

Thanks!)

References

® https://rajatvd.github.io/NTK/
® https://lilianweng.github.io/posts/2022-09-08-ntk/

® https://www.youtube.com/watch?v=DObobAnELKU

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong
Wang, On exact computation with an infinitely wide neural net, NeurlPS 32 (2019).

over-parameterized models using optimal transport, NeurlPS 31 (2018).

Lenaic Chizat, Edouard Oyallon, and Francis Bach, On lazy training in differentiable

[d Lenaic Chizat and Francis Bach, On the global convergence of gradient descent for

[
programming, NeurlPS 32 (2019).

[

Arthur Jacot, Franck Gabriel, and Clément Hongler, Neural tangent kernel: Convergence
and generalization in neural networks, NeurlPS 31 (2018).

Neural Tangent Kernel Introduction 18 roronto V' NoTTOTE

https://rajatvd.github.io/NTK/
https://lilianweng.github.io/posts/2022-09-08-ntk/
https://www.youtube.com/watch?v=DObobAnELkU

Backup

Over-Parameterization At Initialization Time — GP

https://rajatvd.github.io/NTK/

B
. F1 UNIVERSITY OF VECTOR
Neural Tangent Kernel Introduction 20 & TORONTO 7 e

https://rajatvd.github.io/NTK/

Depiction of Lazy Training for Wide Neural Nets

0 20 Y R) T 200 a0 600
(a) 10 layer (b) 100 layer (c) 1000 layer

https://rajatvd.github.io/NTK/

B
i S ovirsy o 7 VECTOR
Neural Tangent Kernel Introduction 21 % TORONTO INSTITUTE

https://rajatvd.github.io/NTK/

	anm2:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.164:
	1.163:
	1.162:
	1.161:
	1.160:
	1.159:
	1.158:
	1.157:
	1.156:
	1.155:
	1.154:
	1.153:
	1.152:
	1.151:
	1.150:
	1.149:
	1.148:
	1.147:
	1.146:
	1.145:
	1.144:
	1.143:
	1.142:
	1.141:
	1.140:
	1.139:
	1.138:
	1.137:
	1.136:
	1.135:
	1.134:
	1.133:
	1.132:
	1.131:
	1.130:
	1.129:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

