
An Introduction to the Neural Tangent Kernel (NTK)

Stephan Rabanser stephan@cs.toronto.edu

University of Toronto
Department of Computer Science

Vector Institute for
Artificial Intelligence

February 2, 2023

Recap: Linear Regression

• We are given a dataset D = {(xi , yi)}ni=1 with xi ∈ RD and yi ∈ R.

• Goal: predict a response y from features x using a linear function.

• Model the relationship using the predictive function:

fw (x) = 〈w , x〉 = w>x

• The quality of our fit is determined by a loss function:

Lw =
1

2

n∑
i=1

(yi − fw (xi))2

• We want to minimize the loss: minw Lw . We can do this using gradient descent:

wt+1 = wt − η∇wLw

Neural Tangent Kernel Introduction 2

Recap: Kernel Methods
• Linear relations are restrictive, interesting datasets have non-linear interactions!

• Transform features into higher-dimensional space:

x ∈ RD → φ(x) ∈ RK ,K � D

• Structure of prediction function stays the same: fw (x) = w>φ(x).

• The model is linear in w but non-linear in x .

• As a result, the objective Lw is still convex and solvable using gradient descent:

Lw =
1

2

n∑
i=1

(yi − fw (xi))2 =
1

2

n∑
i=1

(yi −w>φ(xi))2 min
w
Lw

• This is great! We have non-linear features but still a convex objective! However:
• The transformation function φ(·) is fixed and needs to be tuned manually.
• The computation of the feature map φ(x) ∈ RK with K � D can be expensive.

Neural Tangent Kernel Introduction 3

Recap: Kernel Trick

• Many ML algorithms can be reformulated to feature space inner products:

κ(x , x ′) = 〈φ(x), φ(x ′)〉

• This inner product is called a kernel function κ(·, ·) and can be thought of as a
similarity measure of two input vectors x and x ′.
• Example kernels:

κPol(x , x ′) = (x>x′ + c)d κSE(x , x ′) = σ2 exp

(
−(x − x ′)2

2`2

)

• Collect all similarities in a postive semi-definite kernel matrix: K ∈ Rn×n � 0.

• Algorithms can be ”kernelized”: only rely on kernels instead of expl. feature maps.

• Are such kernels flexible enough? What about the computational concerns?

Neural Tangent Kernel Introduction 4

Recap: Neural Networks

x1

xd

...

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
m

...

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
o

...

h
(3)
1

h
(3)
2

h
(3)
3

h
(3)
p

...

y1

y2

yk

...

• We don’t want to define non-linear
transformations ourselves: we want
to learn them!

• Discover multiple (hierarchical)
feature spaces:

Rd → Rm → Ro → Rp → · · · → Rk

• The objective Lw is not convex, yet
we still use gradient descent:

Lw =
1

2

n∑
i=1

(yi−fw (xi))2 =
1

2

n∑
i=1

(
yi−σ(W>

l · · ·σ(W>
2 σ(W>

1 xi)))

)2

w = (W1, . . . ,Wl)

Neural Tangent Kernel Introduction 5

Understanding the Performance of Neural Nets: Central Questions

Neural networks empirically perform well, but their convergence and
generalization properties are hard to analyze.

Deep learning is poorly understood. Kernel methods on the other hand are based
on solid mathematical theory. Can we distill a neural network into a kernel?

It is a known result that at initialization time, a wide neural network is a
Gaussian process. Can we also describe the training process using a kernel?

Neural Tangent Kernel Introduction 6

Deriving a Kernel from a Neural Network

• Assume a simple neural network with a single hidden layer and params w = (A,b):

x1

xd

...

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
m

...

y

A b

y = fw (x) = 1√
m

∑m
j=1 bjσ(a>j x)

• As discussed, the objective Lw is no longer convex:

Lw =
1

2

n∑
i=1

(yi − fw (xi))2 =
1

2

n∑
i=1

(
yi −

1√
m

m∑
j=1

bjσ(a>j xi)
)2

Neural Tangent Kernel Introduction 7

Deriving a Kernel from a Neural Network (cont’d)

Lw =
1

2

n∑
i=1

(yi − fw (xi))2 =
1

2

n∑
i=1

(
yi −

1√
m

m∑
j=1

bjσ(a>j xi)
)2

• We can still minimize the objective Lw using full-batch gradient descent:

wt+1 = wt − η∇wLwt

= wt − η
n∑

i=1

(yi − fwt (xi)) ∇w fwt (xi)︸ ︷︷ ︸
variable during training

changes depending on wt

Under what circumstances does ∇w fwt (xi) not change much during training?

Neural Tangent Kernel Introduction 8

Lazy Training

• Assume we initialize the weights randomly using a standard Gaussian: N (0, 1).

• We can observe the trajectory of the weights during training:

w0 −→ w1 −→ w2 −→ . . . −→ wT

Empirical Observation

When m is large (m→∞), parameters show stable evolution patterns (ε→ 0).

w0 wT

ε
Lazy training

w0

wT

ε
Non-Lazy training

Neural Tangent Kernel Introduction 9

Depiction of Lazy Training for Wide Neural Nets

(a) Loss evolution (b) Weight distance from origin

https://rajatvd.github.io/NTK/

Neural Tangent Kernel Introduction 10

https://rajatvd.github.io/NTK/

Neural Tangent Kernel: Approximating a Lazy Trajectory

• If lazy training holds, then a first-order Taylor approximation of the function
around its initialization w0 might be helpful:

fw (x) ≈ fw0(x) +∇w fw0(x)>︸ ︷︷ ︸
φ(x)>

(w −w0) + . . .︸ ︷︷ ︸
higher order
Taylor terms

≈ c + φ(x)>(w −w0)︸ ︷︷ ︸
model is an affine func in w

Neural Tangent Kernel (NTK)

For the standard kernel definition κ(x , x ′) = 〈φ(x), φ(x ′)〉, use the gradient of
the neural network’s output evaluated at w0 as the kernel function:

φ(x) = ∇w fw0(x)

Neural Tangent Kernel Introduction 11

Computing the NTK for Our Toy Example

• Recall our simple neural network from before:

x1

xd

...

h
(1)
1

h
(1)
2

h
(1)
m

...

yA b

y = fw (x) = 1√
m

∑m
j=1 bjσ(a>j x)

{
∇aj fw (x) = 1√

m
bjσ
′(a>j x)x

∇bj fw (x) = 1√
m
σ(a>j x)

• Computing the Neural Tangent Kernel for this network:

κNTK(x , x ′) = κ
(A)
NTK(x , x ′) + κ

(b)
NTK(x , x ′)

=
1

m

m∑
i=1

b2
i σ
′(a>i x)σ′(a>j x ′)xx ′ +

1

m

m∑
j=1

σ(a>j x)σ(a>j x ′)

m→∞
= E[b2σ′(A>x)σ′(A>x ′)xx ′] + E[σ(A>x)σ(A>x ′)]

Neural Tangent Kernel Introduction 12

Analyzing Gradient Descent

• This kernel can directly be used in a kernel machine!

• We can analyze further properties of neural network training using flow dynamics.

• Example: parameter gradient flow dynamics (η → 0):

wt+1 = wt − η∇wLwt

wt+1 −wt

η
= −∇wLwt

dwt

dt

η→0
= −∇wLwt

Can we use differential equations to analyze the evolution of various properties
of neural networks (weights, predictions, losses, etc. over time)?

Neural Tangent Kernel Introduction 13

Dynamics of Parameters and Predictions

Parameter Dynamics

How do the parameters change over
the course of training?

Assume Lwt = 1
2 ||fwt − y ||22. Then:

∇wLwt = ∇w fwt (fwt − y)

dwt

dt
= −∇wLwt

= −∇w fwt (fwt − y)

Predictions Dynamics

How do the predictions change over
the course of training?

Approximate w/ NTK matrix KNTK:

dfwt

dt
= −∇w f >wt

dwt

dt

= − ∇w f >wt
∇w fwt︸ ︷︷ ︸

NTK evaluated at wt

(fwt − y)

≈ −KNTK(fwt − y)

Neural Tangent Kernel Introduction 14

ODE Solution for Residual Loss

• Under a simple residual loss, we can model the dynamics w/ linear ODE:

u = fwt − y =⇒ du
dt
≈ −KNTKu =⇒ ut = u0 exp(−KNTKt)

• As t →∞, u → 0 and fwt → y .

• In over-parameterized networks: KNTK � 0, i.e. smallest eigenvalue larger than 0!

• We can factorize the kernel matrix KNTK =
∑k

i=1 λiviv
>
i with 0 < λ1 < . . . < λk .

• Substituting this factorization back into the ODE:

ut = u0

k∏
i=1

exp(−λiviv>i t)

• λ1 governs the rate of convergence.

Neural Tangent Kernel Introduction 15

Summary & Open Questions

Summary of Neural Tangent Kernel

• Parameters hardly move from their initialization for m→∞.

• NTK is defined as the gradient of the NN evaluated at init: ∇w f >w0
∇w fw0 .

• NTK is deterministic at initialization and constant during training.

• Can be used in ODEs to study evolution of various quantities.

Open Questions

• Results from the NTK limit are not SOTA. Where does the gap come from?

• Results only hold for full-batch GD. What is the role of SGD?

• NTK results talk about convergence? What about performance?

• How can we use these training dynamics insights for trust?

Neural Tangent Kernel Introduction 16

Thanks! :)

References

• https://rajatvd.github.io/NTK/

• https://lilianweng.github.io/posts/2022-09-08-ntk/

• https://www.youtube.com/watch?v=DObobAnELkU

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong
Wang, On exact computation with an infinitely wide neural net, NeurIPS 32 (2019).

Lenaic Chizat and Francis Bach, On the global convergence of gradient descent for
over-parameterized models using optimal transport, NeurIPS 31 (2018).

Lenaic Chizat, Edouard Oyallon, and Francis Bach, On lazy training in differentiable
programming, NeurIPS 32 (2019).

Arthur Jacot, Franck Gabriel, and Clément Hongler, Neural tangent kernel: Convergence
and generalization in neural networks, NeurIPS 31 (2018).

Neural Tangent Kernel Introduction 18

https://rajatvd.github.io/NTK/
https://lilianweng.github.io/posts/2022-09-08-ntk/
https://www.youtube.com/watch?v=DObobAnELkU

Backup

Over-Parameterization At Initialization Time → GP

https://rajatvd.github.io/NTK/

Neural Tangent Kernel Introduction 20

https://rajatvd.github.io/NTK/

Depiction of Lazy Training for Wide Neural Nets

(a) 10 layer (b) 100 layer (c) 1000 layer

https://rajatvd.github.io/NTK/

Neural Tangent Kernel Introduction 21

https://rajatvd.github.io/NTK/

	anm2:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.164:
	1.163:
	1.162:
	1.161:
	1.160:
	1.159:
	1.158:
	1.157:
	1.156:
	1.155:
	1.154:
	1.153:
	1.152:
	1.151:
	1.150:
	1.149:
	1.148:
	1.147:
	1.146:
	1.145:
	1.144:
	1.143:
	1.142:
	1.141:
	1.140:
	1.139:
	1.138:
	1.137:
	1.136:
	1.135:
	1.134:
	1.133:
	1.132:
	1.131:
	1.130:
	1.129:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

