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Topics of This Tutorial

• Hammersley-Clifford Theorem

• Gaussian Log-Likelihood

• Markov Random Fields as Exponential Families

• Variable Elimination

• Restricted Boltzmann Machines
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The Intuition for How the Hammersley-Clifford Theorem Works

Consider a simple chain X − Y − Z . The corresponding graphical model is given by all
distributions that factorize:

f (x , y , z) = α(x , y)β(y , z).

We want to show that this is equivalent to X ⊥ Z | Y as long as α(x , y) > 0 and
β(y , z) > 0 for all x , y , z .

f (x , y , z) = α(x , y)β(y , z) ⇐⇒ X ⊥ Z | Y

We will use the characterization that X ⊥ Z | Y if and only if f (x | y , z) = f (x | y).
⇐=: For the left implication note that

f (x , y , z) = f (y , z)f (x | y , z) = f (x | y)f (y , z).

So the statement works with α(x , y) = f (x | y) and β(y , z) = f (y , z).
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The Intuition for How the Hammersley-Clifford Theorem Works

=⇒: For the right implication note that

f (y , z) =
󰁛

x

α(x , y)β(y , z) =

󰀣
󰁛

x

α(x , y)

󰀤
β(y , z),

and so

f (x | y , z) = f (x , y , z)

f (y , z)
=

α(x , y)β(y , z)

(
󰁓

x α(x , y))β(y , z)
=

α(x , y)󰁓
x α(x , y)

,

which does not depend on z , proving the conditional independence.
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Gaussian Log-Likelihood

Suppose we observe some data from the m-variate Gaussian distribution
x1:n = {x1, . . . , xn}. For this calculation, we will assume that the underlying mean is 0.
This is something that can be assumed without loss of generality by centering the data.
Denote K = Σ−1. Then the corresponding density function is expressed as follows:

f (x;K ) =

󰁳
det(K )

(2π)m/2
exp

󰀃
−1

2 x
⊤K x

󰀄
.

The log density for a single data point is given by

log f (x;K ) = −m

2
log(2π) +

1

2
log detK − 1

2
x⊤Kx.

Up to the obvious constants that do not depend on K , the log-likelihood is

ℓn(K ; x1:n) =
n

2
log det(K )− 1

2

n󰁛

i=1

x⊤i Kxi .
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Gaussian Log-Likelihood

Note that:
n󰁛

i=1

x⊤i Kxi =
n󰁛

i=1

tr(x⊤i Kxi ) =
n󰁛

i=1

tr(Kxix
⊤
i ) = tr(Kn

1

n

n󰁛

i=1

xix
⊤
i ) = n tr(KSn),

where the empirical covariance is given by:

Sn =
1

n

n󰁛

i=1

xix
⊤
i .

With this new notation:

ℓn(K ; x1:n) =
n

2
(log det(K )− tr(KSn)).

Some useful facts:
• log det(K ) is a strictly concave function of K .
• tr(KSn) is linear in K . Hence, tr(KSn) is also strictly concave.
• The gradients are ∇K log det(K ) = K−1 and ∇K tr(KSn) = Sn.
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Gaussian Log-Likelihood

Recall:

• The sum of a strictly concave function with another strictly concave function is
strictly concave.

• Any first order maximizer is also a global maximizer in concave functions.

• We want to find the optimal estimator for K .

Using these insights we get:

∇K ℓn(K ; x1:n) =
n

2
(∇K log det(K )−∇K tr(KSn))

!
= 0

=
n

2
(K−1 − Sn)

!
= 0

This becomes 0 when K−1 = Sn, i.e. when we use the empirical covariance estimator.

CSC412 – Tutorial 3 7



Markov Random Fields as Exponential Families

Consider a simple undirected graph X1 − X2 − X3 where each variable is binary.
Consider the following graphical model:

p(x1, x2, x3 | θ) =
1

Z (θ)
ψ1,2(x1, x2 | θ1,2)ψ2,3(x2, x3 | θ2,3),

or equivalently:

p(x1, x2, x3 | θ) = exp {logψ1,2(x1, x2 | θ1,2) + logψ2,3(x2, x3 | θ2,3)− logZ (θ)} .

We wont worry about the normalization factor from here on onwards, i.e. Z (θ) = 1.
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Markov Random Fields as Exponential Families

The vector (x1, x2) takes four values (0, 0), (0, 1), (1, 0), (1, 1). Take:

θ1,2 :=

󰀵

󰀹󰀹󰀷

logψ1,2(0, 0)
logψ1,2(0, 1)
logψ1,2(1, 0)
logψ1,2(1, 1)

󰀶

󰀺󰀺󰀸 ∈ R4,

and let φ1,2(x1, x2) be the function that satisfies:

φ1,2(0, 0) =

󰀵

󰀹󰀹󰀷

1
0
0
0

󰀶

󰀺󰀺󰀸 , φ1,2(0, 1) =

󰀵

󰀹󰀹󰀷

0
1
0
0

󰀶

󰀺󰀺󰀸 , φ1,2(1, 0) =

󰀵

󰀹󰀹󰀷

0
0
1
0

󰀶

󰀺󰀺󰀸 , φ1,2(1, 1) =

󰀵

󰀹󰀹󰀷

0
0
0
1

󰀶

󰀺󰀺󰀸 .
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Markov Random Fields as Exponential Families

With these definitions, logψ1,2(x1, x2 | θ1,2) = θ⊤1,2φ1,2(x1, x2). We define θ2,3 and
φ2,3(x2, x3) in a similar way, obtaining that:

p(x1, x2, x3 | θ) = exp
󰁱
θ⊤1,2φ1,2(x1, x2) + θ⊤2,3φ2,3(x2, x3)− logZ (θ)

󰁲
,

which forms an exponential family with sufficient statistics:

φ1,2(x1, x2) =

󰀵

󰀹󰀹󰀷

(1− x1)(1− x2)
(1− x1)x2
x1(1− x2)

x1x2

󰀶

󰀺󰀺󰀸 , φ2,3(x2, x3) =

󰀵

󰀹󰀹󰀷

(1− x2)(1− x3)
(1− x2)x3
x2(1− x3)

x2x3

󰀶

󰀺󰀺󰀸 ,

and with Z (θ) = 1.
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Markov Random Fields as Exponential Families

As a side comment, we note that this exponential family is not minimal in the sense
that the values of φ1,2(x1, x2) and φ2,3(x2, x3) lie in a hyperplane:

φ1,2(x1, x2)
⊤

󰀵

󰀹󰀹󰀷

1
1
1
1

󰀶

󰀺󰀺󰀸 = 1 for all (x1, x2) ∈ {0, 1}2.

Non-minimal exponential families do not satisfy the gradient equation
∇A(θ) = Eθ[T (X )] – indeed, here A(θ) = 0. An easy solution is to get rid of the first
coordinate in φ1,2(x1, x2) and replace it with the corresponding functions of the
remaining entries of φ1,2(x1, x2). This defines new natural parameters:

θ̄1,2 =

󰀵

󰀷
logψ1,2(0, 1)− logψ1,2(0, 0)
logψ1,2(1, 0)− logψ1,2(0, 0)
logψ1,2(1, 1)− logψ1,2(0, 0)

󰀶

󰀸 , θ̄2,3 =

󰀵

󰀷
logψ2,3(0, 1)− logψ2,3(0, 0)
logψ2,3(1, 0)− logψ2,3(0, 0)
logψ2,3(1, 1)− logψ2,3(0, 0)

󰀶

󰀸 .

CSC412 – Tutorial 3 11



Markov Random Fields as Exponential Families

And new sufficient statistics:

φ̄1,2(x1, x2) =

󰀵

󰀷
(1− x1)x2
x1(1− x2)

x1x2

󰀶

󰀸 , φ̄2,3(x2, x3) =

󰀵

󰀷
(1− x2)x3
x2(1− x3)

x2x3

󰀶

󰀸 .

Moreover:
A(θ̄) = logψ1,2(0, 0)ψ2,3(0, 0),

which should now be explicitly expressed in terms of θ̄1,2 and θ̄2,3.
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Simple variable elimination example

x1

x2x3

x4x5

x6

Suppose that we observe the variable X6 = x̄6. What is p(X1 | x̄6)?
The corresponding DAG model implies the factorization:

p(x1, . . . , x6) = p(x1)p(x2 | x1)p(x3 | x1)p(x4 | x2)p(x5 | x3)p(x6 | x2, x5).

We have:

xF = {x1}, xE = {x6}, xR = {x2, x3, x4, x5},

p(xF | xE ) =
p(xF , xE )

p(xE )
=

󰁓
xR

p(xF , xE , xR)󰁓
xF ,xR

p(xF , xE , xR)
,

=⇒ p(x1 | x̄6) =
p(x1, x̄6)

p(x̄6)
=

p(x1, x̄6)󰁓
x∈xF ,xR p(x , x̄6)

.
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Simple Variable Elimination Example

To compute p(x1, x̄6), we use variable elimination in the order 2, 3, 4, 5:

p(x1, x̄6) = p(x1)
󰁛

x2

󰁛

x3

󰁛

x4

󰁛

x5

p(x2 | x1)p(x3 | x1)p(x4 | x2)p(x5 | x3)p(x̄6 | x2, x5)

= p(x1)
󰁛

x2

p(x2 | x1)
󰁛

x3

p(x3 | x1)
󰁛

x4

p(x4 | x2)
󰁛

x5

p(x5 | x3)p(x̄6 | x2, x5)

= p(x1)
󰁛

x2

p(x2 | x1)
󰁛

x3

p(x3 | x1)
󰁛

x4

p(x4 | x2)p(x̄6 | x2, x3)
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Simple Variable Elimination Example

Note that p(x̄6 | x2, x3) does not need to participate in
󰁓

x4
, so:

p(x1, x̄6) = p(x1)
󰁛

x2

p(x2 | x1)
󰁛

x3

p(x3 | x1)p(x̄6 | x2, x3)
󰁛

x4

p(x4 | x2)

= p(x1)
󰁛

x2

p(x2 | x1)
󰁛

x3

p(x3 | x1)p(x̄6 | x2, x3)

= p(x1)
󰁛

x2

p(x2 | x1)p(x̄6 | x1, x2)

= p(x1)p(x̄6 | x1)

Finally:

p(x1 | x̄6) =
p(x1)p(x̄6 | x1)󰁓
x1
p(x1)p(x̄6 | x1)

.
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Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) is a simple generative stochastic artificial
neural network model. In the language of today’s lecture, it is obtained from a special
form of the Ising model with variables (X1, . . . ,Xk ,H1, . . . ,Hl) ∈ {−1, 1}k+l .
The underlying graph is the bipartite graph with all pairs Hi − Xj connected but with
no other edges.

H1 H2 H3 · · · Hk

X1 X2 X3 · · · Xl
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Restricted Boltzmann Machines

The Ising model is then given by all distributions:

p(x , h) = p(x1, . . . , xk , h1, . . . , hl) ∝ exp

󰀻
󰀿

󰀽
󰁛

i

αixi +
󰁛

j

βjhj +
k󰁛

i=1

l󰁛

j=1

Jijxihj

󰀼
󰁀

󰀾 .

We can write it in terms of factors:

ψXi ,Hj
(xi , hj) = exp

󰀝
1

l
αixi +

1

k
βjhj + Jijxihj

󰀞
,

so that:

p(x , h) = p(x1, . . . , xk , h1, . . . , hl) =
1

Z

k󰁜

i=1

l󰁜

j=1

ψXi ,Hj
(xi , hj).
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Restricted Boltzmann Machines

Note that computing Z may be computationally expensive, but we will see that many
quantities can be efficiently computed without knowing Z .
The corresponding RBM is given as the marginal distribution:

p(x) =
󰁛

h∈{−1,1}l
p(x , h).

Note that both:

󰁛

h∈{−1,1}l

k󰁜

i=1

l󰁜

j=1

ψXi ,Hj
(xi , hj) and

󰁛

x∈{−1,1}k

k󰁜

i=1

l󰁜

j=1

ψXi ,Hj
(xi , hj)

can be computed very efficiently. This shows that both p(x | h) and p(h | x) are easy
to obtain, and this computation does not even require any knowledge of the
normalizing constant Z .
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Restricted Boltzmann Machines

This computation confirms what we know from the Hammersley-Clifford theorem: that
all Hi ’s are mutually independent given the vector X . The individual activation
functions are given by:

p(hj | x) =
󰁔k

i=1 ψij(xi , hj)󰁔k
i=1 ψij(xi ,−1) +

󰁔k
i=1 ψij(xi , 1)

= σ

󰀣
βj +

󰁛

i

Jijxi

󰀤
,

with:

σ(y) =
ey

e−y + ey
=

1

1 + e−2y
,

called the sigmoid function.
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