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Topics of This Tutorial

Hammersley-Clifford Theorem

Gaussian Log-Likelihood

Markov Random Fields as Exponential Families

Variable Elimination

Restricted Boltzmann Machines
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The Intuition for How the Hammersley-Clifford Theorem Works

Consider a simple chain X — Y — Z. The corresponding graphical model is given by all
distributions that factorize:

f(x,y,2) = a(x,y)B(y, 2).

We want to show that this is equivalent to X L Z | Y as long as a(x,y) > 0 and
B(y,z) > 0 for all x,y,z.

f(x,y,2) = a(x,y)8(y,z) <= X LZ|Y

We will use the characterization that X L Z | Y if and only if f(x | y,z) = f(x | y).
<—: For the left implication note that

f(x,y,2) = fy, 2)f(x | y,2) = f(x [ y)f(y, 2).
So the statement works with a(x,y) = f(x | y) and B(y,z) = f(y, z).
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The Intuition for How the Hammersley-Clifford Theorem Works

—=: For the right implication note that

fy,2) =Y alxy)By,z) = (Z a(x,y)> B(y,2),

X X

and so
Fix|y.z) = (o2 _aloy)Bly.2) _alxy)
’ fly,z2)  (Cealy)By,2) Y alxy)

which does not depend on z, proving the conditional independence.
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Gaussian Log-Likelihood

Suppose we observe some data from the m-variate Gaussian distribution

X1:n = {X1,...,Xn}. For this calculation, we will assume that the underlying mean is 0.
This is something that can be assumed without loss of generality by centering the data.
Denote K = ¥~1. Then the corresponding density function is expressed as follows:

f(x;K) = Vdet(K) exp(—3x"Kx).

- (27T)m/2
The log density for a single data point is given by

1 1
log f(x; K) = —g log(27) + 3 logdet K — EXTKX.

Up to the obvious constants that do not depend on K, the log-likelihood is

1 n
(K x1:0) = g log det(K) — 5 ZX,TKX,-.
i=1
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Gaussian Log-Likelihood

Note that:
n n n 1 n
T T T T
LK i= t K i)= tr(K iXj = tr(Kn— iX; )= tr(K. n),
;:1 x; Kx ;21 r(x; Kx;) ;:1 r(Kxix; ) = tr( n— IE:lxx ) = ntr(KS,)

where the empirical covariance is given by:
n
1
S, = - g x,-x,-T.
n-
i=1

With this new notation:
(K X1n) = g(log det(K) — tr(KS,)).
Some useful facts:
® |ogdet(K) is a strictly concave function of K.

® tr(KS,) is linear in K. Hence, tr(KS,) is also strictly concave.
® The gradients are Vi logdet(K) = K~! and Vk tr(KS,) = S,.
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Gaussian Log-Likelihood

Recall:

® The sum of a strictly concave function with another strictly concave function is
strictly concave.

® Any first order maximizer is also a global maximizer in concave functions.

® \We want to find the optimal estimator for K.

Using these insights we get:

Viln(K; x1:0) = g(vK log det(K) — Vi tr(KSy)) = 0

= J(K'=S,) 0

This becomes 0 when K~1 = S,,, i.e. when we use the empirical covariance estimator.

R
_ T VECTOR
CSC412 — Tutorial 3 7 % TORONTO 7 INSTITUTE



Markov Random Fields as Exponential Families

Consider a simple undirected graph X; — X — X3 where each variable is binary.
Consider the following graphical model:

1
p(x1,x0,x3 | ) = mwlg(xlﬁQ | 012)¢23(x2,x3 | 623),

or equivalently:
p(x1,x2,x3 | 0) = exp {log ¥12(x1, x2 | 012) + log 123(x2, X3 | 02,3) — log Z(0)} .

We wont worry about the normalization factor from here on onwards, i.e. Z(6) = 1.
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Markov Random Fields as Exponential Families

The vector (x1, x2) takes four values (0,0),(0,1),(1,0),(1,1). Take:
|Og w1,2(07 0)
log 11,2(0, 1) 4
010 = ’ € R,
M2 llogt2(1,0)
log 12(1,1)
and let ¢12(x1,x2) be the function that satisfies:
1 0 0 0
0 1 0 0
¢1,2(050) = 0|’ ¢1,2(07 1) = ol ¢172(150) = 1] ¢1,2(1> 1) = 0
0 0 0 1
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Markov Random Fields as Exponential Families

With these definitions, log 1 2(x1, X2 | 612) = 9I2¢1,2(x1,x2). We define 6,3 and
¢2.3(x2,x3) in a similar way, obtaining that:

p(x1,x2,x3 | 0) = exp {91T,2¢1,2(X1,X2) + 05 302:3(x2, x3) — log 2(9)} ;

which forms an exponential family with sufficient statistics:

(1—)(1 - ) (1=l ~x)
¢172(X1, X2) = )(i'(I ilz:s , ¢2,3(X2, X3) = )(;(I i23:3 )
X1X0 X2X3

and with Z(9) = 1.
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Markov Random Fields as Exponential Families

As a side comment, we note that this exponential family is not minimal in the sense
that the values of ¢12(x1,x2) and ¢z 3(x2, x3) lie in a hyperplane:

1
(;5172(x1,><2)T i =1 forall (x1,x) € {0, 1}2.
1
Non-minimal exponential families do not satisfy the gradient equation
VA(0) =Ey[T(X)] — indeed, here A(6) = 0. An easy solution is to get rid of the first

coordinate in ¢ 2(x1, x2) and replace it with the corresponding functions of the
remaining entries of ¢12(x1,x2). This defines new natural parameters:

_ log 11,2(0,1) — log 11,2(0,0) _ log 12,3(0,1) — log 12,3(0,0)
0172 = |og ¢172(1, 0) - Iog 1/)1,2(0, 0) y (9273 = |og ¢273(1, 0) - |og ¢273(0, 0)
log 11,2(1,1) — log 11,2(0,0) log 1)2,3(1,1) — log 12 3(0,0)
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Markov Random Fields as Exponential Families

And new sufficient statistics:

_ (1 —X1)X2 _ (]. —X2)X3
P12(x1,x2) = |x1 (1 —x2) |, ¢23(x2,x3) = [x2(1 — x3)
X1X2 X2X3

Moreover:

A(0) = log11,2(0,0)12.3(0,0),

which should now be explicitly expressed in terms of §172 and 52,3.
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Simple variable elimination example

e Suppose that we observe the variable Xg = X5. What is p(X1 | X6)?
The corresponding DAG model implies the factorization:

p(xi,- -5 x6) = p(x1)p(x2 | x1)p(xs | x1)p(xa | x2)p(xs | x3)p(x6 | X2, X5).

e e We have:
@ @ XF = {Xl}u XE = {X6}7 XR = {X27X37X47X5}7

XE, X, > e P(XF, XE, XR)
Pl | ) = P2 e

@ p(XE) B ZXHXR ,D(XF,XE,XR)7

p(x1,%) p(x1,Xe)

p(Xﬁ) a EXEXF,XR p(X7 )?6) .

= p(x1 | %) =
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Simple Variable Elimination Example

To compute p(xi, Xs), we use variable elimination in the order 2,3, 4,5:

p(x1,%6) = p(x1) D D D> plxe | x1)p(xs | x1)p(xa | x2)p(xs | x3)p(%6 | X2, X5)

X2 X3 X4 X5

=p(x1) D P02 [x1)Y  plxa|x1)D  plxa | x2) D plxs | x3)p(%6 | x2, x5)
=p(x1) D> P02 [x1)) plxs|x1)D  plxa | x2)p(%6 | X2, x3)

X3 Xa
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Simple Variable Elimination Example

Note that p(Xs | x2, x3) does not need to participate in }_, so

p(x1,%6) = p(x1) ZP (x2 | x1) ZP (x3 [ x1)p(X6 | x2, x3) ZP (xa | x2)

X4

p(x1 ZP x2 | x1) ZP x3 | x1)p(X6 | X2, x3)
= p(x1 ZPX2|X1P>_<6|X1,X2)

= p(x1)p(%6 | x1)

Finally: (xa)p(% | x1)
v pxa)p(Xe | x1
p(x1 | %) = > PO1)P(Rs [ x1)”
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Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) is a simple generative stochastic artificial
neural network model. In the language of today's lecture, it is obtained from a special
form of the Ising model with variables (X, ..., Xk, H1,..., H)) € {—1,1}*+/.

The underlying graph is the bipartite graph with all pairs H; — X; connected but with
no other edges.
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Restricted Boltzmann Machines

The Ising model is then given by all distributions:
p(x,h) = p(x1,..., %k, h1,...,h;) ocexp Zax, —i—ZﬂJh —|—ZZJUX,
i=1 j=1

We can write it in terms of factors:
1 1
U,y (X, hy) = exp g Saixi + o Bihy + Jyxihy ¢

so that:

k
1
p(Xa h) = p(X17 ey Xk hla R h/) = ? HHT;Z)X,-,HJ-(XH hj)

i=1j=1
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Restricted Boltzmann Machines

Note that computing Z may be computationally expensive, but we will see that many
quantities can be efficiently computed without knowing Z.
The corresponding RBM is given as the marginal distribution:

p(x) = Z p(x;, h).
he{-1,1}/
Note that both:
k k
Z HH@Z)X,.J.,J.(X,-, h;) and Z HHl/Jx,-,Hj(Xi,hj)
he{-1,1} i=1j=1 xe{-1,1}ki=1j=1

can be computed very efficiently. This shows that both p(x | h) and p(h | x) are easy
to obtain, and this computation does not even require any knowledge of the
normalizing constant Z.
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Restricted Boltzmann Machines

This computation confirms what we know from the Hammersley-Clifford theorem: that
all H;'s are mutually independent given the vector X. The individual activation
functions are given by:

N [T, i (6, hy) _ , -
Py 10 = e + T vgoen) B2 |

with:
e¥ B 1
eY+e 1+e 2’

oly)=

called the sigmoid function.
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