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Goal of This Tutorial

Goals:

• (Re-)familiarize you with representing probability distribution as directed-graphical
models (DGMs).

• Go through examples of DGMs: definition, learning, and inference.

Topics Overview:

• Bayes Ball

• Naive Bayes

• Markov Chains

• Hidden Markov Models (HMMs)

• Medical Diagnosis Example

CSC412 – Tutorial 2 2



Directed Acyclic Graphs and Joint Probability

a f

be

c

Let’s first remember how to write down the joint
probability distribution of this DAG. How do we do that?

p(a, b, c , e, f ) =


n∈{a,b,c,e,f }
p(n|parents(n))

p(a, b, c , e, f ) = p(a)p(f )p(e|a, f )p(b|f )p(c |e)

CSC412 – Tutorial 2 3



Bayes Ball

Active Triples
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Inactive Triples
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A path is active if each triple in
a path is active. If there are no
active paths → independence.
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d-separation and Bayes Ball Reminder

Two sets of variables X and Y are said to be conditionally independent given a third
set Z if and only if there is no active path from any node in X to any node in Y once
we account for the conditioning on Z . Formally:

X ⊥ Y | Z ⇐⇒ There is no active path between X and Y given Z .

Terminology Recap:

1. Active path: A path that remains open under the conditioning set Z . In the
Bayes Ball perspective, one can think of the ball being able to roll from a node in
X to a node in Y without being blocked by the conditioning or collider structures.

2. d-separation: A graphical criterion that tells us when X and Y are independent
given Z . If there is no path open (active) between X and Y once we consider the
effect of Z , then we say X ⊥ Y | Z .

3. Bayes Ball: An algorithmic way to check d-separation by rolling a ball in the
directed graph and seeing if it can make it from X to Y once the conditioning set
Z is taken into account.
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Bayes Ball Example

Is a independent from b?
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Naive Bayes

• Consider the inference problem of text classification into spam/not spam: Let
R.V. C denote whether a text is (C = 1) or isn’t spam (C = 0).

• We’ll use a “bag of words” representation for text:
• Suppose we have a dictionary of d words D = {W1, . . . ,Wd} as an indexable set, a

text x is a set of words in the dictionary, i.e., x ⊆ D, which can be equivalently be
represented as a set of indices x ′ = {i : Wi ∈ x}.

• Fancy way of saying: “Appearance of word matters, repetition and order doesn’t.”

• Example: D = {hello, world, test, is, this, a},
• “hello world” x = {hello, world} x ′ = {1, 2}
• “this is a test” x = {test, is, this, a} x ′ = {3, 4, 5, 6}
• “hello hello hello world” x ′ = {1, 2} = “hello world” = “world hello”
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Naive Bayes: A General Model

• Let X = (X1, . . . ,Xd), Xi ∈ {0, 1} be a binary random vector denoting the
appearance of the ith word in the text (e.g., X(hello world) = (1, 1, 0, 0, 0, 0)).

• Our goal is to compute the posterior p(C |X).
• Using Bayes’ theorem, we can write the posterior as:

p(C |X) = p(C ,X)

p(X)
.

• Since the denominator p(X) does not depend on specific outcome of C , we have

p(C |X) ∝ p(C ,X).

• In general, we can further factorize p(C ,X) into its components with Bayes’ rule:

p(C ,X) = p(C )p(X|C ) = p(C )p(X1|C )p(X2|X1,C ) . . . p(Xd |X1, . . . ,Xd−1,C )

= p(C )p(X1|C )
d

i=2

p(Xi |X1, . . . ,Xi−1,C ).
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Naive Bayes: A General Model

p(C )p(X1|C )
d

i=2 p(Xi |X1, . . . ,Xi−1,C )

C X1 X2 X3 Xd

Few Observations:

• This graph has d + 1 nodes (X1 to Xd , and C ).

• The degree of each node is the same and equal to d – thus, this graph is fully
connected! Every node is a neighbour of every other node.

• For node Xi , # of input edges = i .

• Size of the conditional probability table of each node = 2#input edges+1, which
requires 2#input edges parameters.

• Total # of parameters: 1 +
d

i=1 2
i = 1 + (2d+1 − 2) = 2d+1 − 1, which is equal

to the number of parameters needed to specify the joint tensor over d + 1 binary
random variables – this factorization is indeed general.
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Naive Bayes: Reducing Complexity

Learning 2d+1 − 1 parameters is very expensive (comp & lear-theo).

Goal: Reduce parameters through
simplifying the graphical model.
Method: Remove all edges between
features, only keep edges from C .

C X1 X2 X3 Xd

C

X1 X2 X3 Xd

What factorization does this imply?

p(X ,C ) = p(C )
d

i=1

p(Xi |C )

i.e., p(Xi |X1, . . . ,Xi−1,C ) = p(Xi |C ): Xi is
independent from Xj for all j ∕= i given C .

We can manipulate the joint distribution
through manipulating the DGM!

Number of parameters: 1 + 2d ;
complexity scales linearly, not exponentially.
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Naive Bayes: Learning with Maximum Likelihood Estimation

Parameterize the model as follows: p(C = 1) = π, p(Xj = 1|C = c) = θj ,c .

Suppose we have N texts x i with labels c i , and wish to learn the parameters.

1. Factorize the log-likelihood function:

ℓ(θ) =
1

N

N

i=1

log p(c (i), x (i)) =
1

N

N

i=1

log

p(x (i)|c (i))p(c (i))


=

1

N

N

i=1

log


p(c (i))

D

j=1

p(x
(i)
j |c (i))



=
1

N

N

i=1


log p(c (i)) +

D

j=1

log p(x
(i)
j |c (i))



=
1

N

N

i=1

log p(c (i))

  
Bernoulli log-likelihood of labels

+
1

N

D

j=1

N

i=1

log p(x
(i)
j |c (i))

  
Bernoulli log-likelihood for feature xj
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Naive Bayes: Learning with Maximum Likelihood Estimation

2. Derive the first term:

p(c(i)) = πc(i)(1− π)1−c(i)

N

i=1

log p(c(i)) =
N

i=1

c(i) log π +
N

i=1

(1− c(i)) log(1− π)
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Naive Bayes: Learning with Maximum Likelihood Estimation

3. Factorize and derive the second term:

p(x
(i)
j | c) = θ

x
(i)
j

j ,c (1− θj ,c)
1−x

(i)
j

N

i=1

log p(x
(i)
j | c(i)) =

N

i=1

c(i)

x
(i)
j log θj ,1 + (1− x

(i)
j ) log(1− θj ,1)



+
N

i=1

(1− c(i))

x
(i)
j log θj ,0 + (1− x

(i)
j ) log(1− θj ,0)
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Naive Bayes: Learning with Maximum Likelihood Estimation

4. Set derivative to zero and solve:

∂ℓ(θ)

∂π
=

 c(i)

π
+
 1− c(i)

π − 1
!
= 0,

∂ℓ(θ)

∂θjc
=


c(1)





x
(i)
j

θjc
+

1− x
(i)
j

θjc − 1





!
= 0

π̂ =


i I[c(i) = 1]

N
=

#spams in dataset

total # samples

θ̂j ,c =


i I[x

(i)
j = 1 ∧ c(i) = c]


i I[c(i) = c]
=

#word j appears in spams

# spams in dataset
for c = 1
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Markov Chains
In lecture, you have seen a first-order Markov chain. The “order” of a Markov chain
refers to the number of previous states that the current state could depend on.

X1 X2 X3 XT

p(X1:T ) = p(X1)p(X2 | X1)p(X3 | X2) . . . = p(X1)
T

t=2

p(Xt | Xt−1)

Second-order Markov chain:

X1 X2 X3 X4 XT

p(X1:T ) = p(X1,X2)p(X3 | X1,X2)p(X4 | X2,X3) . . . = p(X1,X2)
T

t=3

p(Xt | Xt−1,Xt−2)
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Hidden Markov Model
A Hidden Markov Model (HMM) is a statistical Markov model in which the system
being modeled is assumed to be a Markov process with unobserved states.

X1 X2 X3 X4

Z1 Z2 Z3 Z4

Where:
• Zt are hidden states taking on one of K discrete values.
• Xt are observed variables taking on values in any space.

The joint probability represented by the graph factorizes according to:

p(X1:T ,Z1:T ) = = p(Z1)
T

t=2

p(Zt | Zt−1)
T

t=1

p(Xt | Zt)
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Medical Diagnosis Example

In the models above, we designed generic DGMs based on (usually wrong, but useful)
assumptions. Next, we will see examples where the models are designed based on
domain knowledge (PPML 10.2.3).
Quick Medical Reference has a bipartite structure, with diseases as hidden nodes,
and symptoms and other observables as visible nodes. All nodes are binary.

flu
heart
disease

botulism
570

diseases

temp WBC
count

abdomen
pain

4075
symptoms
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Medical Diagnosis Example

Let h = {hs}570s=0 denote the hidden nodes, and v = {vt}4075t=0 denote the visible
variables. Their joint distribution can be factorized as:

p(v,h) =


s

p(hs)


t

p(vt | hpa(t))

The conditional probability of the symptoms p(vt | hpa(t)) follows a noisy OR model –
if any parent of vt is positive, then vt is also likely to be positive. More precisely:

p(vt = 0 | hpa(t)) =


s∈pa(t)
θ
I[hs=1]
st

where θst = p(vt = 0 | hs = 1, h/s = 0). One way to visualize this is to take a coin flip
with head probability of θst for each disease that is positive, and if all of the coins are
heads, then the symptom will be negative. If any coin flipped tails, then the symptom
will be positive.

CSC412 – Tutorial 2 18



Medical Diagnosis Example

A “dummy” node h0 is added to represent all “unknown diseases” and is always set to
1. This allows the model to give non-zero probability to patients who have symptoms
but no included diseases.

h0 h1 h2 P(v = 0 | h1, h2) P(v = 1 | h1, h2)

1 0 0 θ0 1− θ0

1 1 0 θ0θ1 1− θ0θ1

1 0 1 θ0θ2 1− θ0θ2

1 1 1 θ0θ1θ2 1− θ0θ1θ2

Table 10.1: Noisy-OR CPD for 2 parents augmented with a leak node. We have
omitted the t subscript for brevity.
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Medical Diagnosis Example

The Alarm Network, with 37 random variables relating to vital signs, conditions, and
symptoms, was designed to monitor ICU patients. Each random variable is discrete,
with up to 4 states. Since the graph is sparsely connected, the total number of
parameters in the graph is only 504 (much less than 237 − 1). It is small enough to
allow inference of marginal distributions of unobserved nodes when conditioned on
sufficient observed nodes.

You will see algorithms that perform this inference later in the course.
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Medical Diagnosis Example
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Medical Diagnosis Example

The connections in this graph are made based on domain knowledge - causal relations
that are known in medicine. For instance, Hypovolemia is a low level of extracellular
fluid. The extracellular fluid is fluid thats drained from the blood into body tissue in
the capillaries. They traverse the lymphatic system, which carries these fluid back into
the blood stream through the superior vena cava. Reduction in this fluid volume can
reduce volume of blood reaching the heart, which decreases stroke volume. The stroke
volume, multiplied with the heart rate, determines cardia output, which in turn
determines blood pressure.
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