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Distribution Shift in Deployment Impacts Performance
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Suitability Filters Detect Performance Deterioration

A classifier M : X → Y is suitable for use on unlabelled Du ∼ Dtarget iff the estimated
accuracy of M on Du deviates at most by m from the accuracy on Dtest ∼ Dsource:

1
|Du|

∑
x∈Du

I{M(x) = O(x)}︸ ︷︷ ︸
estimated accuracy on user data

≥ 1
|Dtest|

∑
(x,y)∈Dtest

I{M(x) = y}︸ ︷︷ ︸
accuracy on test data

−m.

 Question
How can we proxy accuracy on the user data without access to labels?

A suitability filter fs : X → {SUITABLE, INCONCLUSIVE} outputs SUITABLE iff M

is suitable for use on Du with high probability and INCONCLUSIVE otherwise.

Margin Tuning Guarantees Suitability in Practice

δ-Calibration: E[pc(x)] − P[M(x) = y] = δ.

If C is δ-calibrated with δsource and δtarget, define
m′ = m + δsource − δtarget and conduct a non-
inferiority test with H0 : µtarget < µsource − m′.
Then the FPR of this test is bounded by α.

 Insight
Margin tuning ensures that C continues to

provide reliable estimates, even in the
presence of distribution shifts. −0.2 −0.1 0.0 0.1
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Main Contribution
Detecting performance drops on

new, unlabeled user data is a key
challenge for deployed ML models. Our

suitability filter compares model
outputs from new and old data via

statistical testing to determine if the
model’s accuracy has degraded

beyond a user-defined
performance margin. Our testing

procedure even guarantees bounded
FPR under some distribution shifts.

Learn more:

Paper &
Code

Dtrain ∼ Dsource

Classifier trained
on Dtrain:

M : X → Y
Dsf ∼ Dsource

Signal s2 ∈ R

Signal s1 ∈ R

...

Signal ss ∈ R

Logit:
w⊤s(x; M) + b 0.5

1
pc

σ(·)

Per-sample prediction correctness probability estimator trained on
Dsf: C : Rs → [0, 1]. Aggregated into pc over all data points.
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Dtest ∼ Dsource
Classifier

M : X → Y

Du ∼ Dtarget
Classifier

M : X → Y

Prediction correctness
probability estimator

C : Rs → [0, 1]

Prediction correctness
probability estimator

C : Rs → [0, 1]
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Statistical Hypothesis Test

m

pc

Density

H0 : µtarget < µsource − m

INCONCLUSIVE
if p > α

SUITABLE
if p ≤ α

Classifier M is suitable
for deployment on Du.

Acc(M, Du) ≥ Acc(M, Dtest) − m
holds with high probability.

How Can a Model User Pick a Good Model?

Model User

Du ∼ Dtarget

Unlabeled (x, _)

Model Provider

Dtest ∼ Dsource

Dtrain ∼ Dsource

Labeled (x, y)

1) I am looking for a classification model M .

2) I have a model M that achieves
acc(M, Dtest) on Dtest ∼ Dsource.

3) Can I use model M with Du ∼ Dtarget?
I need at least acc(M, Dtest) − m.

4) just try it out ...

4) I can give you a suitability guarantee! Ë

Suitability Signals
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Margin Adjustment

m′ = m + ∆test − ∆u
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Suitability Filters Work Across Domains

Dataset Acc FPR ROC
FMoW ID 81.8±3.1% 0.027±0.033 0.969±0.023
FMoW OOD 91.9±2.5% 0.018±0.017 0.965±0.016

RxRx1 ID 100.0±0.0% 0.000±0.000 1.000±0.000
RxRx1 OOD 97.5±7.2% 0.031±0.088 0.997±0.006

CivilComm ID 93.3±5.3% 0.002±0.007 0.997±0.008 -7
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 Observation
On FMoW, we detect performance deterioration of > 3% with 100% accuracy.


