Suntablllty Filter: A Statistical Framework for Classifier Evaluation in Real-World Deployment Settings
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Distribution Shift in Deployment Impacts Performance Suitability Filters Detect Performance Deterioration Margin Tuning Guarantees Suitability in Practice
> N AT A classifier M : X' — ) is suitable for use on unlabelled D,, ~ Dy,pget iff the estimated 5-Calibration: E[p.(z)] — P[M(z) = y] = 6. 0.10 |
,ﬁ~ accuracy of M on D, deviates at most by m from the accuracy on Diest ~ Dsoyrce: oo ° forrectfg't_-t
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Il M T > H{M(x) = —m. source target, u: _ Trend Line
Data Model D, |a§ { o) 2 | Drest| (W)EE; M) =y) m' = M + Osource — Otarget and conduct a non- -2 000
Preparation Training | Deployment estimated accuracy on user data acjcuracy on test data inferiority test with HO L Mtarget < Hsource — m'. u% 0.04-
' Then the FPR of this test is bounded by «. > 0,09 -
@ Question .
How can we proxy accuracy on the user data without access to labels? V Insight < 0.00-
Margin tuning ensures that C' continuesto | 2 -
A suitability filter £, : X — {SUITABLE, INCONCLUSIVE} outputs SUITABLE iff M provide reliable estimates, even in the 0,04

presence of distribution shifts. —0.2 ~0.1 0.0 0.1
Accuracy Diff. (User Accuracy - Test Accuracy)

is suitable for use on D, with high probability and INCONCLUSIVE otherwise.

- s — Density Statistical Hypothesis Test
probability estimator ' I
—_— C:R = 0,1 p.

E. . Prediction correctness Density
Classifier o |
M:X Y probability estimator
. _% C:R*—|0,1]

Main Contribution

Detecting performance drops on
new, unlabeled user data is a key
challenge for deployed ML models. Our
suitability filter compares model
outputs from new and old data via
statistical testing to determine if the

L earn more:

D test Dsource

model’s accuracy has degraded = Classifier trained Signal s, € R —
beyond a user-defined Dt ~ Dsopyrce on Diain: ‘ Classitier M is suitable
. : . Wl
performance margin. Our testing M:X =Y Signal s, € R for deployment on D,,.
procedure even guarantees bounded Acc(M, D)) > Acc(M, Diet) — m
FPR under some distribution shifts. - ®§ Per-sample prediction correctness probability estimator trained on holds with high probability.
Dirain ~ Deouree Signal s, € R Dy C :R% — |0,1|. Aggregated into p¢ over all data points.
Suitability Signals Margin Adjustment Suitability Filters Work Across Domains
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On FMoW, we detect performance deterioration of > 3% with 100% accuracy.
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