Gatekeeper: Improving Model Cascades Through Confidence Tuning

Stephan Rabanser¹ Nathalie Rauschmayr² Achin Kulshrestha² Petra Poklukar² Wittawat Jitkrittum² Sean Augenstein² Congchao Wang² Federico Tombari²

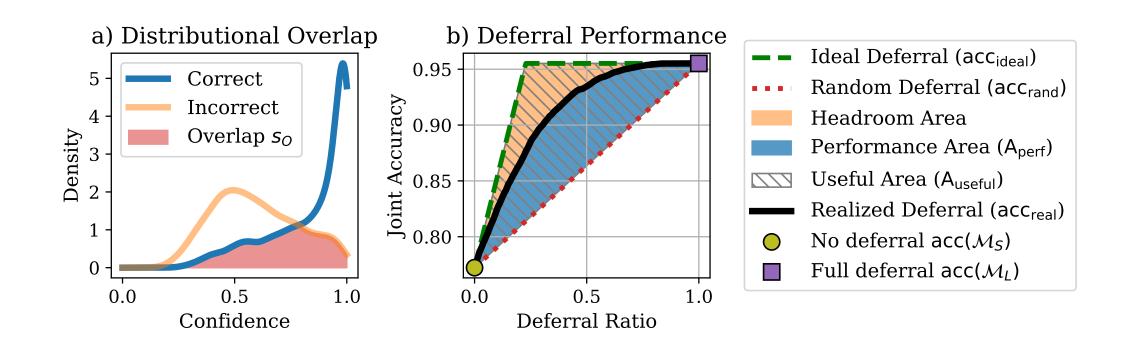
¹University of Toronto & Vector Institute ²Google

 $\operatorname{acc}(\mathcal{M}_L)$

Main Contribution

We introduce a new loss function that calibrates smaller models in cascade setups to confidently handle easy examples while deferring complex ones.

Evaluation Metrics



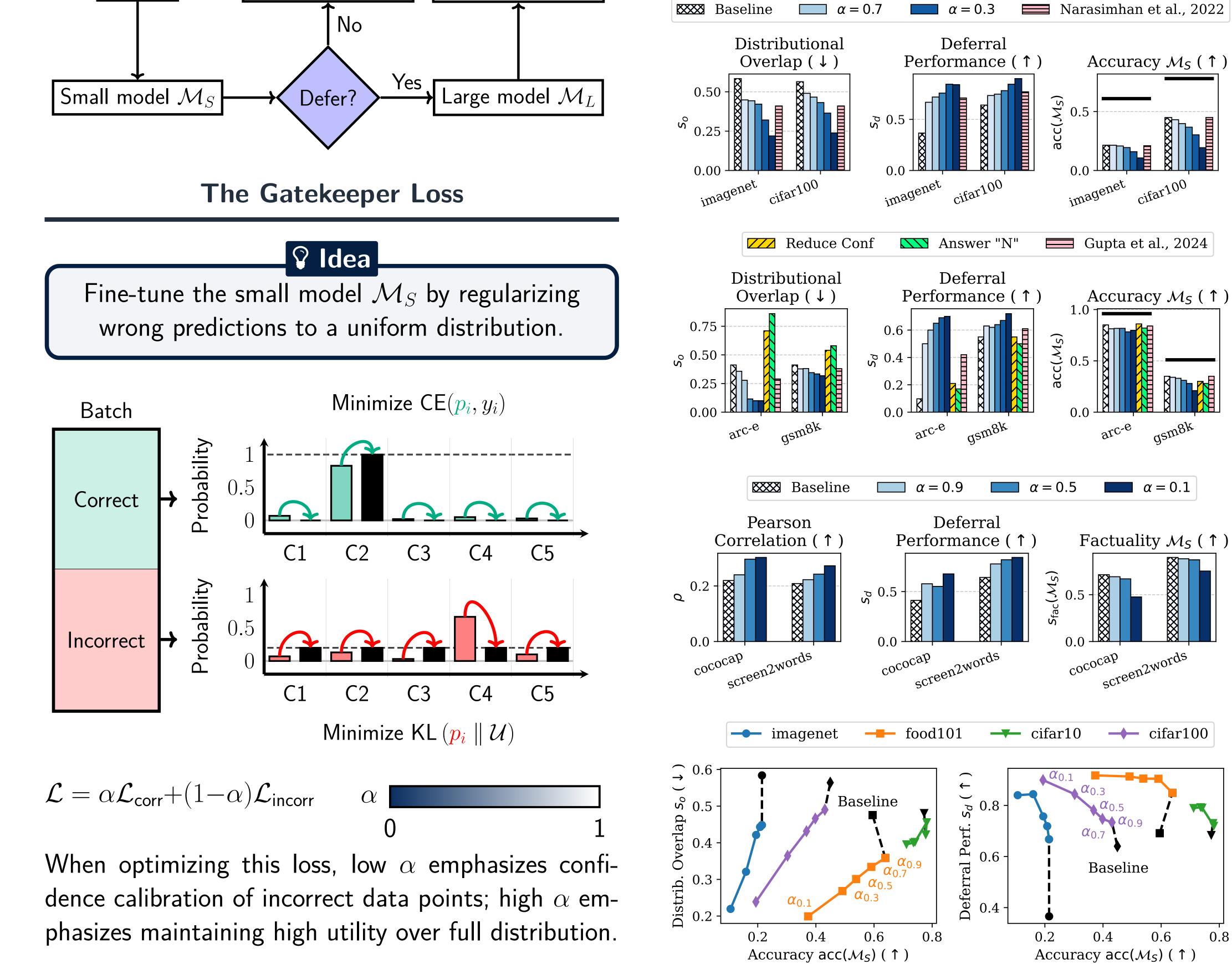
Experimental Results

 $\alpha = 0.5$

 $\alpha = 0.1$

 $\alpha = 0.9$

Model Cascading Overview



The loss terms take the following form:

$$\mathcal{L}_{corr} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1} \{ y_i = \hat{y}_i \} \operatorname{CE}(p_i, y_i)$$
$$\mathcal{L}_{incorr} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1} \{ y_i \neq \hat{y}_i \} \operatorname{KL}(p_i \parallel \mathcal{U})$$

Analogous extension to token-based models possible.

Insight

Across all modalities, Gatekeeper enables improved deferral performance by better separating correct versus incorrect predictions, especially at low α . However, this comes at the cost of reduced small model accuracy.