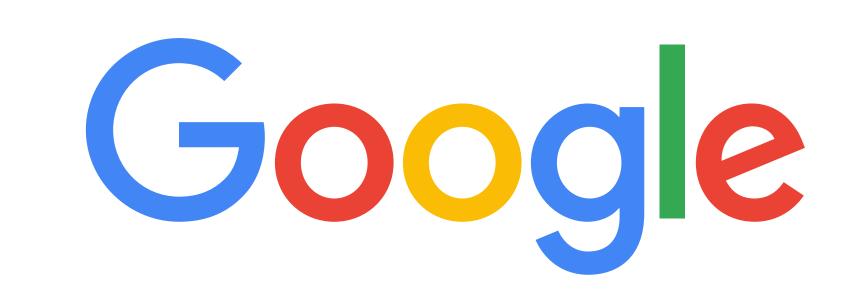
Gatekeeper: Improving Model Cascades Through Confidence Tuning

Stephan Rabanser, Princeton University

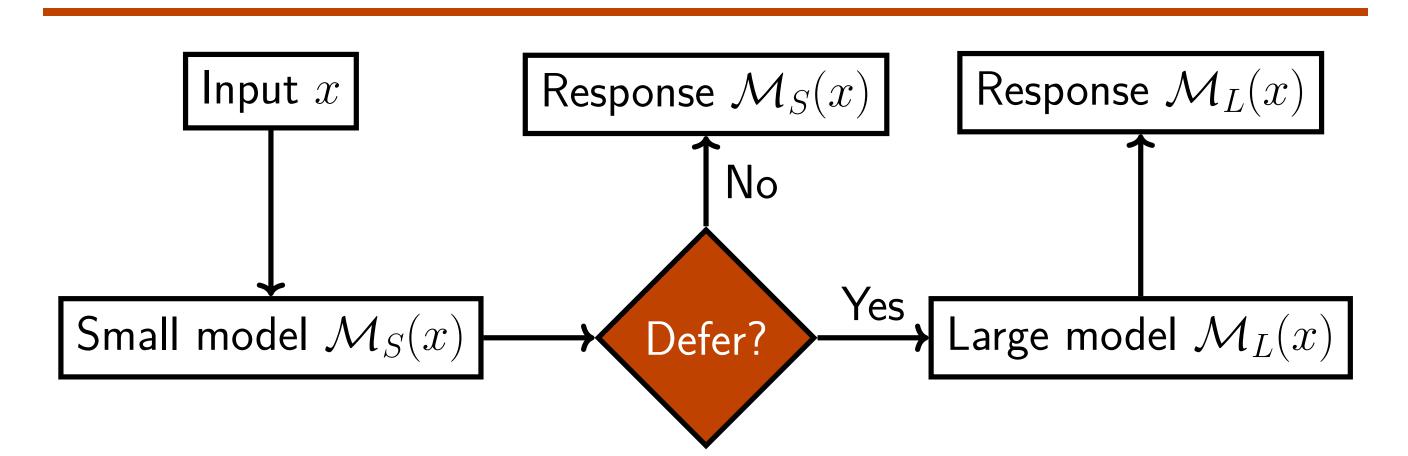
Nathalie Rauschmayr, Achin Kulshrestha, Petra Poklukar, Wittawat Jitkrittum, Sean Augenstein, Congchao Wang, Federico Tombari, Google Research



Main Contribution

We introduce a new loss function that calibrates smaller models in cascade setups to confidently handle easy examples while at the same time deferring more complex queries.

Cascading Overview



Assumption

We assume that \mathcal{M}_L dominates \mathcal{M}_S with high probability: $\Pr_{(x,y)\sim\mathcal{D}}\left[\mathcal{M}_L(x)\neq y \land \mathcal{M}_S(x)=y\right]\leq \delta,$

with $\delta \ll 1$. This "almost-always" dominance, supported by scaling-law trends, implies that deferring from \mathcal{M}_S to \mathcal{M}_L cannot hurt accuracy in expectation, while still allowing rare counterexamples where the small model outperforms the large model.

? Question

Can we optimize the small model to separate correct from incorrect predictions?

A Workflow for Better Cascading

1 Standard training: We begin with an \mathcal{M}_S that has already been trained on the tasks it is intended to perform upon deployment.

2 Finetuning with Gatekeeper: We introduce a correctnessaware loss to fine-tune \mathcal{M}_S for improved confidence calibration.

3 Deferral via uncertainty thresholding: Given a deferral function $g: \mathbb{R}^D \to \mathbb{R}$ and a targeted acceptance threshold $\tau \in \mathbb{R}$:

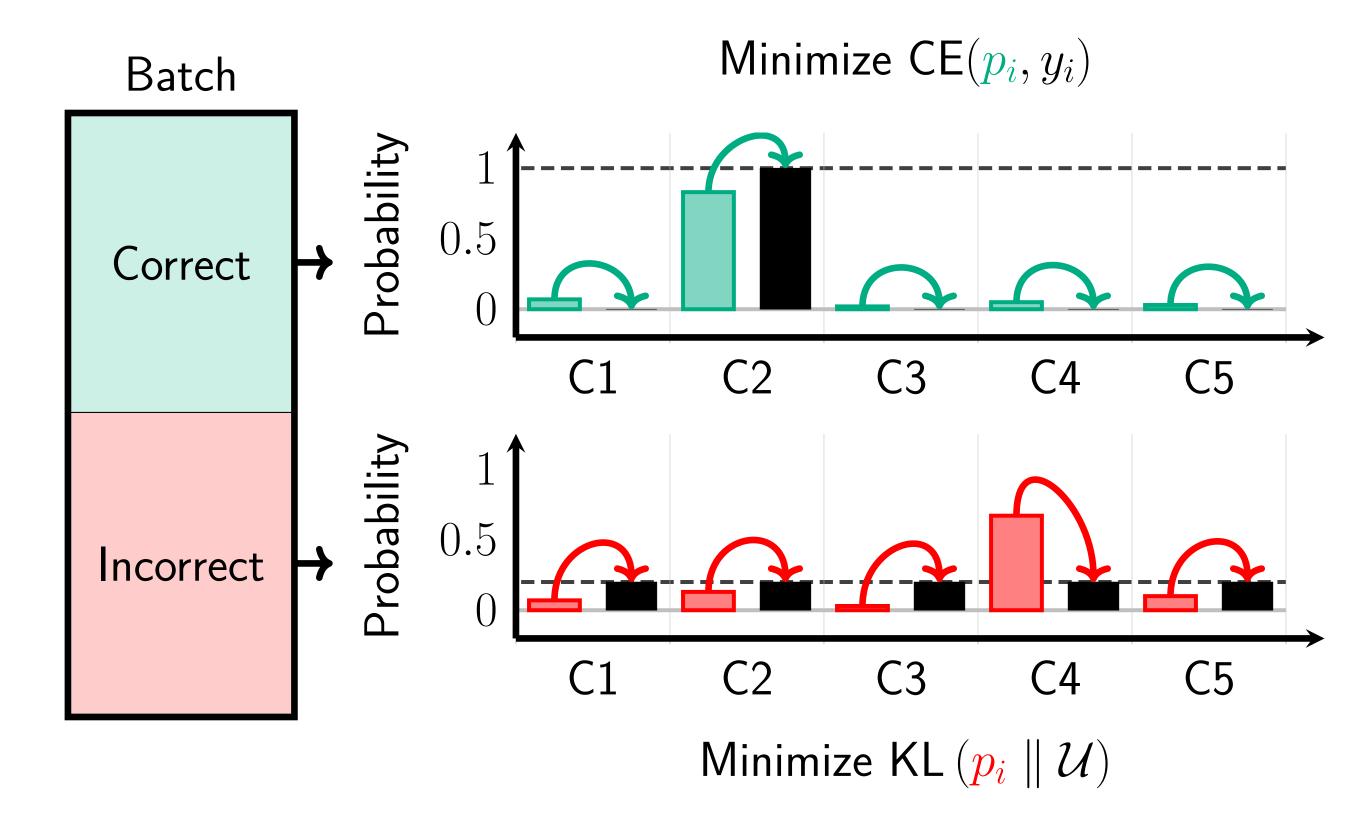
$$(\mathcal{M}_S, \mathcal{M}_L, g)(x) = egin{cases} \mathcal{M}_S(x) & g(x) \geq au \ \mathcal{M}_L(x) & ext{otherwise.} \end{cases}$$

Classification: $g_{\mathsf{CL}}(x) = \max_{1 \leq c \leq C} p(y = c \mid x)$. Sequence: $g_{\mathsf{NENT}}(x) = \frac{1}{T} \sum_{t=1}^{T} \sum_{c=1}^{C} p(y_t = c \mid x) \log p(y_t = c \mid x)$

Higher values of g_{CL} or g_{NENT} indicate lower predictive uncertainty.

Confidence Calibration With Gatekeeper

Fine-tune the small model \mathcal{M}_S by regularizing wrong predictions to a uniform distribution \mathcal{U} .



$$\mathcal{L} = \alpha \mathcal{L}_{\text{corr}} + (1 - \alpha) \mathcal{L}_{\text{incorr}}$$



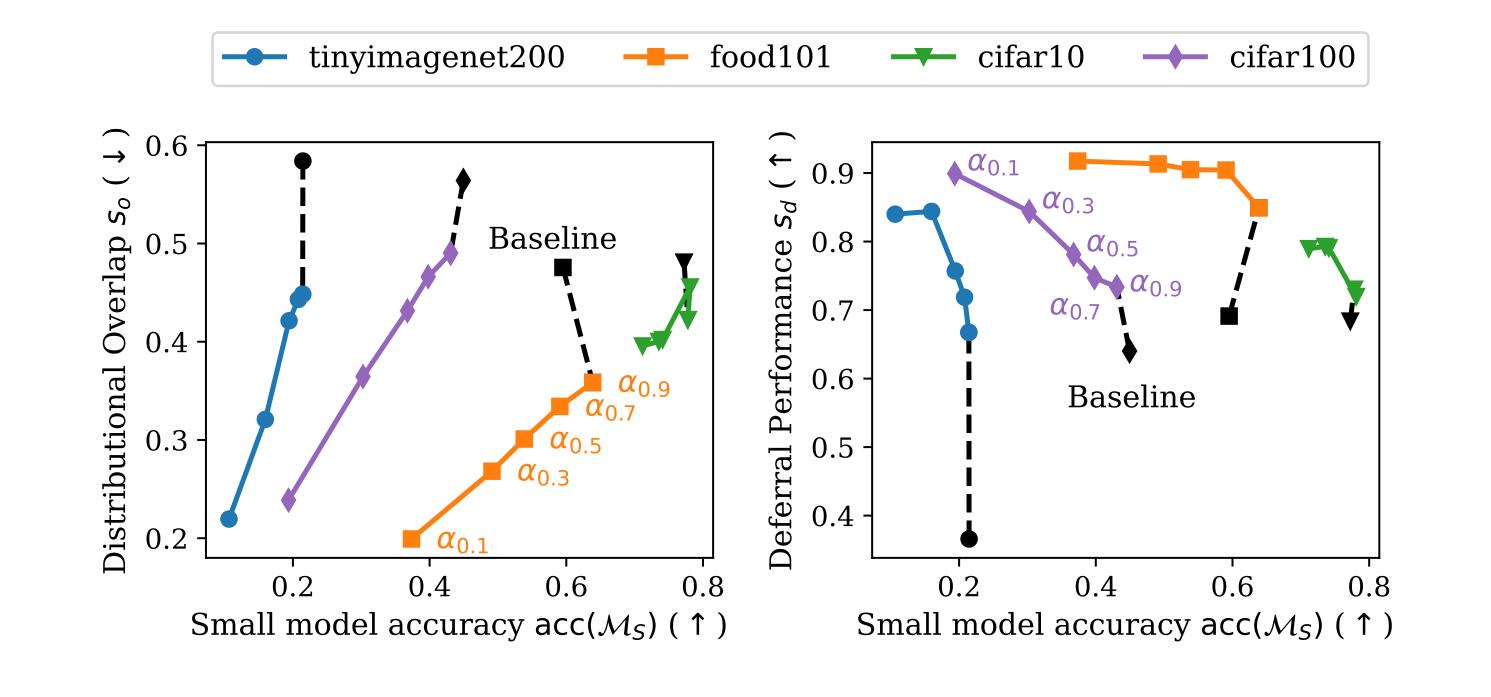
 \downarrow Low α emphasizes confidence calibration of incorrect data points. \uparrow High α emphasizes maintaining high utility over full distribution.

$$\mathcal{L}_{\mathsf{corr}} = rac{1}{N} \sum_{\substack{i=1 \ t-1}}^{N, \, T} \mathbb{1}\{y_{i,t} = \hat{y}_{i,t}\} \mathsf{CE}(p_{i,t}(x_i), y_{i,t})$$

$$\mathcal{L}_{\mathsf{incorr}} = \frac{1}{N} \sum_{\substack{i=1 \\ t-1}}^{N, T} \mathbb{1}\{y_{i,t} \neq \hat{y}_{i,t}\} \mathsf{KL}\left(p_{i,t}(x_i) \parallel \mathcal{U}\right)$$

Observation

There is a tradeoff between deferral performance and overall accuracy. \mathcal{M}_S effectively unlearns handling hard data points.



Empirical Results Across Classification, Language, and Multi-Modal Models

