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Abstract

We might hope that when faced with unexpected inputs, well-designed software systems
would fire off warnings. Machine learning (ML) systems, however, which depend strongly
on properties of their inputs (e.g. the i.i.d. assumption), tend to fail silently as thorough
input validation is often insufficiently implemented in operationalized ML pipelines.

As part of this thesis we explore the problem of building ML systems that fail loudly,
investigating methods for detecting dataset shift, identifying exemplars that most typify
the shift, and quantifying shift malignancy. We focus on several datasets and various
perturbations to both covariates and label distributions with varying magnitudes and
fractions of data affected.

Interestingly, we show that across the dataset shifts that we explore, a two-sample-
testing-based approach, using pre-trained classifiers for dimensionality reduction, performs
best. Moreover, we demonstrate that domain-discriminating approaches tend to be helpful
for characterizing shifts qualitatively and determining if they are harmful.



Zusammenfassung

In der Informatik gilt es als allgemeine Praxis, dass gut konzipierte Softwaresysteme
im Falle von unerwarteten Eingaben Warnungen ausgeben. Systeme, die auf Algorith-
men des Maschinellen Lernens (ML) basieren, sind jedoch stark von Eigenschaften der
Eingabedaten abhängig (wie unter anderem der i.i.d.-Annahme) und scheitern daher oft
im Stillen. Dies liegt insbesondere meist daran, dass eine gründliche Überprüfung der
Eingaben in die ML Pipeline oft nur unzureichend implementiert ist.

Im Rahmen dieser Masterarbeit befassen wir uns mit dem Problem von Verteilungsverän-
derungen im Maschinellen Lernen. Insbesondere beschäftigen wir uns mit der Erkennung
von Verteilungsveränderungen, deren Charakterisierung mittels der Identifizierung von
für die Veränderung typischen Exemplaren, sowie der Frage in welchem Umfang die
Verteilungsveränderung die Performance des ML Algorithmus beeinflusst. Dabei un-
tersuchen wir mehrere Datensätze mit unterschiedlichsten Abwandlungen sowohl der
Daten- als auch der Merkmalsverteilungen in verschiedenen Intensitäten und prozentual
betroffenen Datenpunkten.

Wir zeigen, dass über sämtliche untersuchten Perturbationen hinweg ein Zwei-
Stichproben-Test-Verfahren basierend auf Repräsentationen eines vor-trainierten Klas-
sifikators die besten Ergebnisse erzielt. Außerdem legen unsere Ergebnisse nahe, dass
Domain-diskriminierende Verfahren hilfreich sind, um Verteilungsveränderungen qualita-
tiv zu charakterisieren und um festzustellen ob diese schädlich sind.
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Chapter 1

Introduction

Owing to breakthroughs on a variety of practical supervised learning problems, software
systems employing deep neural networks are now applied widely in industry, powering the
vision systems in social networks (Stone et al., 2008) and self-driving cars (Bojarski et al.,
2016), providing assistance to radiologists (Lakhani and Sundaram, 2017), underpinning
recommendation engines used by online retailers and digital content providers (Cheng
et al., 2016; Covington et al., 2016), enabling the best-performing commercial speech
recognition software (Graves et al., 2013; Hinton et al., 2012), and automating translation
between languages (Sutskever et al., 2014). In each of these systems, predictive models
are integrated into conventional human-interacting software systems, which leverage their
predictions to drive consequential real-world decisions.

The reliable functioning of software depends crucially on tests, such as unit tests,
input validations, and deployment verifications. Many classic software bugs can be caught
when software is compiled, e.g. that a function receives input of the wrong type, while
other problems are detected only at run-time, triggering warnings or exceptions. In
the worst case, if the errors are never caught, software may behave incorrectly without
alerting anyone to the problem.

Unfortunately, software systems based on machine learning are notoriously hard to test
and maintain (Sculley et al., 2014). Despite their power, modern machine learning models
are brittle. Seemingly subtle changes in the data distribution can destroy the performance
of otherwise state-of-the-art classifiers, a phenomenon exemplified by adversarial examples
(Szegedy et al., 2013; Zügner et al., 2018). When decisions are made under uncertainty,
even shifts in the label distribution can significantly compromise accuracy (Lipton et al.,
2018; Zhang et al., 2013).

Unfortunately, in practice, ML pipelines rarely inspect incoming data for signs of
distribution shift. Moreover, best practices for detecting shift in high-dimensional real-
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Two-Sample Test(s)xsource

……

xsource

…

……

……

xtarget

……

Dimensionality
Reduction

Combined Test Statistic 
& Shift Detection

… …

Fig. 1.1 Our pipeline for detecting dataset shift. Source and target data is fed through a
dimensionality reduction process and subsequently analyzed through statistical hypothesis
testing. We consider various choices for how to represent the data and how to perform
two-sample tests.

world data have not yet been established1. The first indications that something has gone
awry might come when customers complain.

In this thesis, we investigate methods for detecting and characterizing distribution
shift, with the hope of removing a critical stumbling block obstructing the safe and
responsible deployment of machine learning in high-stakes applications. Faced with
distribution shift, our goals are three-fold: (i) detect when distribution shift occurs from
as few examples as possible; (ii) characterize the shift, e.g. by identifying those samples
from the test set that appear over-represented in the target data; and (iii) provide some
guidance on whether the shift is harmful or not. As part of this thesis we principally
focus on goal (i) and explore preliminary approaches to (ii) and (iii).

Although a couple of related work have already established shift detection and
correction schemes (see Chapter 2), many of these methods require specific assumptions
on the underlying properties of the shift, producing wrong predictions whenever these
specific conditions are not met. Furthermore, some of these properties are either unknown
or intractable to estimate in many real-life settings. To that end, we propose a general
purpose detection method that does not impose a structured (distributional) assumption
on how the shift occurs.

We investigate shift detection through the lens of statistical two-sample testing where
we wish to test the equivalence of the source distribution p (from which training data
is sampled) and target distribution q (from which real-world data is sampled). For
simple univariate distributions, such hypothesis testing is a mature science. For example,
given draws from two different Bernoulli random variables, well-established procedures
govern whether to reject the null hypothesis that their means are the same. On the
other hand for color photographs, with high-dimensional continuously-valued inputs, best

1TensorFlow’s data validation tools compare only summary statistics of source vs target data:
https://tensorflow.org/tfx/data_validation/get_started#checking_data_
skew_and_drift

https://tensorflow.org/tfx/data_validation/get_started#checking_data_skew_and_drift
https://tensorflow.org/tfx/data_validation/get_started#checking_data_skew_and_drift
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practices for detecting shift have not yet been established. While off-the-shelf methods for
kernel-based multivariate two-sample tests are appealing, they scale badly with dataset
size and their statistical power is known to decay badly with high ambient dimension
(Ramdas et al., 2015).

One natural approach to ML practitioners might be to train a classifier to distinguish
between source and target examples. Given class-balanced holdout samples, we can
pronounce the data shifted if our classifier can recognizes the domain with significantly
greater than 50% accuracy and simultaneously determine the nature of the shift and
its malignancy. Analyzing the simple case where one wishes to test the means of two
Gaussians, Ramdas et al. (2016) recently showed that the power of a classification-based
two-sample test using Fisher’s Linear Discriminant Analysis classifier achieves minimax
rate-optimal performance. However, the performance of classifier-based approaches
has not been characterized (either theoretically or empirically) for the complex high-
dimensional data distributions on which modern machine learning is routinely deployed.
Providing this empirical analysis is a key contribution of this work. Note that throughout
this thesis, to avoid confusion, we denote any source-vs-target classifier a domain classifier
and refer to classifiers trained (on source data) for the original classification task as a
label classifier.

One benefit of the domain-classifier approach is that it reduces dimensionality to
a single dimension, learned precisely for the purpose of discriminating between source
and target data. However, learning such a classifier from scratch may require large
amounts of training data. Adding to the problem, the domain-classifier approach requires
partitioning our (scarce) target data, e.g. using half for training and leaving the remainder
for two-sample testing. Alternatively we also explore the black box shift detection (BBSD)
approach due to Lipton et al. (2018), which addresses shift detection under the label
shift assumption. They show that if one possesses an off-the-shelf label classifier f(·)
with an invertible confusion matrix (verifiable on training data), then detecting that the
source distribution p differs from the target distribution q requires only detecting that
p(f(·)) ̸= q(f(·)). This insight enables efficient shift detection, using a pre-trained (label)
classifier for dimensionality reduction. Building on these ideas of combining black-box
dimensionality reduction with subsequent two-sample testing, we explore a range of
dimensionality reduction techniques and compare them under a wide variety of shifts
(see Figure 1.1 for an illustration of our general framework). We show (empirically) that
BBSD works surprisingly well under a broad set of shifts, even when the label shift
assumption is not met.



Chapter 2

Related Work

The problems of detecting and correcting dataset shift relate to extensive prior work in
the domain adaptation and anomaly detection literature, as well as in the time-series
literature on the problem of change-point detection.

2.1 Early Works

Perhaps the earliest work directly relevant to distribution shift comes from ground-
breaking work in epidemiology and public health on propensity scoring and the work of
econometricians James Heckman, who studied sample selection bias (Heckman, 1977),
and Manski who studied the related problem of estimating choice probabilities from
choice-based samples (Manski and Lerman, 1977). These works were not concerned
just with detecting dataset shift but with estimating propensity scores to correct for
biases in collected data sets. These datasets were concerned with simple survey data
and did not address the problems that emerge from working with high-dimensional data.
Shortly after, similar methods were developed in the public health literature to estimate
propensity scores for correcting for biases in the construction of cohorts for health studies
(Rosenbaum and Rubin, 1983).

2.2 Anomaly Detection

Given just one example and the task of estimating whether or not it came from the
same distribution that generated the training data, the dataset shift problem simplifies
to the widely studied problem of anomaly detection, surveyed thoroughly by Chandola
et al. (2009); Markou and Singh (2003). Some popular approaches here include density
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estimation (Breunig et al., 2000), margin-based approaches such as the one-class support
vector machine (Schölkopf et al., 2000), the tree-based isolation forest method due to
Liu et al. (2008) and recently also GANs have proven to be potentially useful for this
task (Schlegl et al., 2017) although this line of work remains fairly heuristic. Given
simple streams of data arriving in a time-dependent fashion where the signal is piece-wise
stationary, with stationary periods separated by abrupt changes, the problem of detecting
a dataset shift becomes the classic time series problem of change point detection, with
existing methods summarized succinctly in an excellent survey by Truong et al. (2018).

2.3 Domain Adaptation

In the machine learning literature, a number of papers have addressed distribution shift,
generally under the umbrella of domain adaptation. In the most familiar setup, the
learner has access to labeled training data from the source distribution and unlabeled
test data from the target distribution and is tasked with producing a classifier that
performs best on the test (target) data. In general, the problem is widely known to be
impossible, with a number of known impossibility theorems (Ben-David et al., 2010).
Trivially, one can see that given no assumptions about either the support or labeling
function for the target distribution, there is no free lunch to be had. However, several
assumptions allow one to theoretically guarantee performance on target data. Schölkopf
et al. (2012) illustrated correspondences between the various assumptions one might
make on precisely what is invariant between train and test times and causal assumptions
on the data generating process. Assuming that the support of the target distributions
is a subset of the training distribution q(x) > 0 ⇒ p(x) > 0 and that the conditional
distribution p(y|x) = q(y|x) stays fixed gives the familiar problem of learning under
covariate shift, which corresponds to the assumption that x causes y. Covariate shift has
been widely studied in the machine learning community since Shimodaira (2000) and
subsequently addressed with a popular kernel-mean matching approach due to Gretton
et al. (2012). Under the label shift assumption, the reverse conditional probability
remains fixed p(x|y) = q(x|y). This setting corresponds to the reverse assumption that
the label causes the covariates, as is applicable in diagnostic-type problems, and has been
extensively explored by Beijbom et al. (2012); Chan and Ng (2005); Lipton et al. (2018);
Storkey (2009); Zhang et al. (2013). Recently, Lipton et al. (2018) showed that given a
classifier whose confusion matrix is invertible, one can produce a consistent estimator of
the test set label distribution with sharp error bounds. Under the label shift assumption,
detecting distribution shift simplifies to the task of detecting label shift.



2.4 Out-Of-Distribution Sample Detection 6

2.4 Out-Of-Distribution Sample Detection

Several recent papers have proposed outlier detection mechanisms dubbing the task
out-of-distribution (OOD) sample detection. Hendrycks and Gimpel (2017) proposes to
simply threshold the maximum softmax entry of a neural network classifier which already
seems to contain a relevant signal. Liang et al. (2018) and Lee et al. (2018) extend this
idea by either adding temperature scaling and adversarial-like perturbations on the input
or by explicitly adapting the loss to aid OOD detection. Choi and Jang (2018) and
Shalev et al. (2018) employ model ensembling to further improve detection reliability.
Alemi et al. (2018) motivate use of the variational information bottleneck. Hendrycks
et al. (2019) expose the model to OOD samples, exploring heuristics for discriminating
between in-distribution and out-of-distribution samples. Shafaei et al. (2018) survey and
compare numerous OOD detection techniques.



Chapter 3

Machine Learning and Statistical
Foundations

Before diving into distribution shifts and methods for detecting them, we need to introduce
a couple of basic foundational terms and concepts from statistics and machine learning.
Since the purpose of this chapter is to give an overview of the key concepts we make
explicit use of in this thesis, it is not designed to be a comprehensive review of machine
learning or statistics as a whole. A thorough treatment of machine learning is provided
by Bishop (2006), Murphy (2012), Goodfellow et al. (2016), and Mohri et al. (2018) while
key statistical concepts are provided by Friedman et al. (2001), James et al. (2013), and
Georgii (2015). Readers well versed in both machine learning and statistics can freely
skip this chapter and continue reading with Chapter 4.

3.1 Machine Learning Basics

3.1.1 Definition

Originally introduced by Arthur Samuel, the term machine learning refers to the set of
algorithms and models used to make a computer perform a certain task by only providing
a collection of data points and no explicit instructions on how to succeed in said task.
Hence, machine learning can also be viewed as the process of learning and generating
insights from data. Perhaps the most intuitively understandable definition of machine
learning is given by Andrew Ng:

Machine learning is the science of getting computers to act without being
explicitly programmed.
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(a) Supervised (b) Unsupervised (c) Semi-supervised

Fig. 3.1 Canonical machine learning problems visualized. Raw data points are depicted
as black crosses, while labeled data points are shown as colored circles and squares.

A more formal definition of what it means for a computer to learn was given by Tom
Mitchell (Mitchell, 1997):

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T ,
as measured by P , improves with experience E.

3.1.2 Canonical Machine Learning Problems

Machine learning problems can generally be divided into four distinct canonical subgroups:
supervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning (Mohri et al., 2018). Each of them comes with their own set of assumptions
about how data is collected, represented, and consequently used for learning. Most
importantly, these subgroups differ in the amount of external supervision they receive
from either field experts or the environment. We briefly introduce the formal setup for
each of the mentioned problem classes below, skipping reinforcement learning as we do
not cover reinforcement learning as part of our shift detection strategy.

Supervised Learning The strongest degree of external supervision is provided in
supervised learning, whose purpose is to learn a function mapping inputs to outputs. In
order to learn that function, a labeled dataset

D = (X,y) = {(xi, yi)}Ni=1 = {(x1, y1), (x2, y2), . . . , (xN , yN)} ∈ (X × Y) (3.1)

is given where we define X = RD with D ∈ N. Depending on the problem setup, we
either refer to the problem class as regression if inputs map to continuous outputs,
formally Y = R, or classification if inputs map to a discrete set of outputs, formally
Y = {y1, . . . , yC} with C ∈ N.
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Unsupervised Learning While most of the currently commercially viable applications
of machine learning are based on labeled datasets, most of the data available in the wild
is in fact unlabeled, which means that we can only collect raw data points

D = X = {xi}Ni=1 = {x1,x2, . . . ,xN} ∈ X (3.2)

where we again define X = RD. The central aim of unsupervised learning is therefore
to uncover hidden structures in the data without external supervision. Typical tasks
encompass clustering, density estimation, dimensionality reduction, outlier detection,
and learning in latent variable models.

Semi-Supervised Learning In some cases, both labeled and unlabeled data points
are both present in the same collection of data, i.e.

D = (X × Y) ∋ {(x1, y1), (x2, y2), . . . , (xn, yn)} ∪ {xn+1,xn+2, . . . ,xN} ∈ X . (3.3)

While naive algorithms might discard either unlabeled data points or labels from labeled
points to make the entire dataset suitable for either supervised or unsupervised learning,
semi-supervised learning algorithms can make use of both labeled and unlabeled points.
Typically, semi-supervised learning is applied in cases where a lot of unlabeled data
points and only a few labeled data points are given.

A visual example of supervised, semi-supervised, and unsupervised data representa-
tions is provided in Figure 3.1.

3.1.3 The Typical Machine Learning Pipeline

While machine learning use-cases can vary greatly, there are some established best
practices of how to architect machine learning pipelines (Géron, 2017). An overview of
the most important steps is depicted in Figure 3.2 and described below:

1. Data collection: First, a dataset is collected from which a model of the underlying
data generating process can subsequently be derived.

2. Data exploration: Data collection is usually followed by data exploration, a stage
in which summary statistics and visualizations play a key role in gaining initial
insights from the data.
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Xtrain Explore

Clean & Preprocess

Choose & Fit Model

Xtest Predictive Model

ytrain

ŷtest

Fig. 3.2 The typical machine learning pipeline. Oval nodes depict components while
rectangular nodes depict actions. Solid arrows indicate paths explored during training
while dashed arrows indicate paths explored during prediction. Gray nodes are only
applicable in supervised learning settings.

3. Data cleaning & pre-processing: In many cases, the collected data can not
be directly used for model fitting, which is why the data needs to undergo some
cleaning and pre-processing in order to be used more effectively during training.

4. Model selection & fitting: Having gained some initial understanding of the
data space, a suitable model can be selected and trained on the cleaned data.

5. Prediction: Finally, new incoming data is fed into the model to obtain predictions.
In some cases, these data points might also have to go through a cleaning-stage,
while they might be directly fed into the model without any preprocessing in other
scenarios.

3.2 Supervised Learning Algorithms

As part of this section, we briefly introduce foundational non-linear supervised learning
algorithms: kernel methods and neural networks.

3.2.1 Kernel Methods

While some (toy-)problems can be solved using linear models, real-world interactions
between different model inputs are usually highly non-linear, limiting the usage of purely
linear models. Concretely, regression problems are often not solvable using a simple
linear equation and classes in classification problems cannot usually be discriminated
against using a simple linear decision boundary.

Kernel methods, which are thoroughly discussed in Schölkopf and Smola (2001),
provide one way of addressing non-linear classification problems by mapping inputs
into a higher-dimensional space in which a linear (or at least approximately linear)
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dividing margin, i.e. a decision boundary, between the classes can be established. Since
kernel methods conveniently make use of kernel functions (hence their name), the high-
dimensional feature space they operate in is never explicitly constructed. Instead, kernel
functions, which can be thought of as measuring similarity between pairs of data points
in feature space, solely rely on computing inner products between data points, which is
computationally favorable since the feature space in only implicitly constructed. This
computational advantage is often referred to as the kernel trick.

Formally, a kernel κ is defined as a mapping κ : X × X → R. Further, we assume the
existence of an inner product space F and a function φ mapping inputs into this space,
i.e. φ : X → F , which satisfies

κ(x,x′) = ⟨φ(x), φ(x′)⟩F . (3.4)

According to Mercer’s theorem (Mercer, 1909), any function κ(·, ·) qualifies as a kernel
if κ is symmetric, i.e. κ(x,x′) = κ(x′,x), and if the matrix containing the computed
similarities using κ (also called Gram matrix) K ∈ RN×N is positive semi-definite.

One of the most prominent members in the family of kernel methods is the support
vector machine (SVM) (Schölkopf and Smola, 2001), which is predominantly used for
classification tasks. SVMs try to find a decision boundary between classes such that
the neighborhood around the dividing margin is free from any data points, hence the
alternative name maximum margin classifier.

3.2.2 Neural Networks

Inspired by biological neural networks found in biological structures like animal brains, an
even more powerful way of addressing non-linear problems is through (artificial) neural
networks (ANNs) (Bishop, 1995). Although reliant on large amounts of data, modern
neural networks are now considered the work-horses of supervised learning and have
reached close to human (sometimes even super-human) performance in a wide variety of
tasks (Abiodun et al., 2018).

Plain ANNs are formed by combining multiple neurons into a connected network of
neurons/nodes. Each node receives a fixed number of inputs i = (i1, . . . , iD) weighted
with their corresponding weights w = (w1, . . . , wD). A neuron effectively computes a
weighted sum over its inputs to which a bias term b is added, followed by the application
of a non-linear activation. Hence, nodes can be thought of as non-linear weighting
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Fig. 3.3 A neuron is the basic building block of any neural network. (a) shows the inner
workings of a single neuron, which involves computing a weighted sum over the inputs,
adding a bias term b, and then applying a nonlinear activation function ϕ. (b)-(g) show
popular activation functions.

functions, formally

o = ϕ

(
D∑
j=1

ijwj + b

)
. (3.5)

The inner workings of a neuron and some popular non-linear activation functions are
shown in Figure 3.3.

By stacking multiple of these neurons in parallel, a neural layer arises; and by
sequentially combining multiple of these layers, a neural network is formed (see Figure 3.4).

Neural networks are trained via optimizers which make extensive use of back-
propagation (Rumelhart et al., 1988), an iterative algorithm in which the weights and
biases are optimized to minimize some loss function by repeatedly making use of the
chain rule to derive the degree of change present at a certain neuron with respect to its
inputs. Back-propagation consists of two main stages: (i) In the first stage inputs are
fed through the network by using the current set of parameters and the output residuals
are computed; and (ii) in the second stage, gradients with respect to the parameters
are calculated at every node all the way back to the input nodes and the weights are
updated accordingly.

Lots of different optimizers, which are designed to minimize a given loss function as
quickly as possible have been proposed, amongst the most prominently used variants
are: stochastic gradient descent (SGD) (Robbins and Monro, 1951), adaptive moment
estimation (ADAM) (Kingma and Ba, 2014), Adagrad (Duchi et al., 2011), Adadelta
(Zeiler, 2012), and RMSprop. Similar to other machine learning problems, the optimizer
choice and its parameters (learning rate, momentum, weight decay, batch size, etc.) but
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(b) Multiple layers being combined into a neural network.

Fig. 3.4 Formation process of neural networks. Bias nodes omitted for increased clarity.

also the network structure itself are considered hyper-parameters and can have a severe
impact on model performance.

Convolutional Neural Networks (ConvNets)

Like plain neural networks, convolutional neural networks are biologically inspired, specif-
ically by the visual cortex found in animal brains (Hubel and Wiesel, 1959). Although
predominantly used for visual recognition tasks (LeCun et al., 1989), convolutional neural
networks can also be useful for capturing temporal dynamics.

ConvNets essentially extend upon classical neural networks by introducing two
additional layer types: convolution layers and max-pooling layers. Convolutional layers
themselves consist of a set of learnable filters (i.e. they need not be hand-engineered like
in plain neural networks), while max-pooling layers down-sample the output obtained by
a convolutional layer. Typical architectures first stack multiple convolution/max-pooling
layers in succession, then flatten the output to a vector and finally pass said vector to a
fully-connected plain neural network.

Residual Networks (ResNets)

Residual networks, which are inspired by pyramidal cells found in the cerebral cortex,
provide further improvements over standard ConvNets by introducing skip-connections
into the architecture (He et al., 2016). These connections can jump over layers to



3.3 Unsupervised Learning Algorithms 14

directly feed into the next layer. This construction allows more effective training of deep
convolutional neural networks, since the skip-connections accelerate learning and help
fighting the vanishing gradient problem.

3.3 Unsupervised Learning Algorithms

We introduce the basics underlying dimensionality reduction and outlier/novelty detection.

3.3.1 Dimensionality Reduction

It is not uncommon in modern machine learning to deal with high-dimensional datasets,
i.e. datasets for which D is staggeringly high. While it is hard to establish an exact
threshold for D in order to be speaking of high-dimensional data, common definitions start
from a few hundred dimensions reaching to billions of dimensions. Such high-dimensional
data is generally challenging for a number of different reasons (Leskovec et al., 2014):

• Due to the curse of dimensionality we need exponential amounts of data to charac-
terize the density as the dimensionality increases.

• Similarity computations are expensive because of the high complexity of the
employed distance functions.

• Some algorithms might have trouble detecting structure in the data if dimensions
are strongly correlated.

• Exploratory data analysis becomes increasingly prohibitive as it becomes harder to
visualize high-dimensional data.

Note that the term high dimensional data differs from the term high dimensional problems,
which usually only refers to datasets where the number of dimensions far exceeds the
number of data points, formally N ≪ D.

While these findings might seem discouraging at first sight, the data often lies in a
lower-dimensional manifold which is embedded in a high-dimensional space. It is therefore
our goal to derive a set of degrees of freedom which can be used to reproduce most of the
variability of a dataset. When performing dimensionality reduction on a dataset from
D to K dimensions (where K ≪ D, K ∈ N) we try to reduce the dimensionality while
avoiding high information loss at the same time. Luckily, this is possible in many cases
as many dimensions show either no or only little variability.



3.3 Unsupervised Learning Algorithms 15

γ 1
γ
2

(a) PCA example. (b) SRP example.

i1

i2

i3

...

iD

h1

...

hH

o1

o2

o3

...

oD

(c) Autoencoder example.

Fig. 3.5 Popular dimensionality reduction methods visualized.

Dimensionality reduction does not only produce a compact low-dimensional encoding
of a given high-dimensional dataset, but also has many additional advantages:

• Preprocessing for supervised learning: Simplify, clean, and reduce the data for
subsequent training.

• Data visualization: Provide a graphical interpretation of a given dataset.

As a result of dimensionality reduction, data requires less storage and algorithms can
process the data more quickly. Also, algorithms which exhibit a quadratic or even cubic
dependance on the dimensionality can become tractable when reducing dimensions.

There are various strategies for how to perform dimensionality reduction. Naive
ideas include removing unimportant features or removing features with low variance.
While these approaches have no need for an intensive preprocessing or training phase to
determine relevant dimensions, they are limited in applicability since they either require
expert knowledge or only focus on individual features ignoring cross-correlations to other
dimensions.

More advanced methods include but are not limited to (standard/probabilistic/kernel)
principal components analysis (PCA/PPCA/KPCA), (gaussian/sparse) random projec-
tions (GRP/SRP), non-negative matrix factorization (NNMF) (Lee and Seung, 2001),
locality-sensitive hashing (LSH) (Gionis et al., 1999), (linear/generalized) discriminant
analysis (LDA/GDA) (Fisher, 1936), and autoencoders. As we make extensive use of
dimensionality reduction as part of our proposed shift detection algorithm, we introduce
the most relevant DR techniques in detail below.
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Principal Components Analysis (PCA)

One of the most widely used dimensionality reduction techniques is principal components
analysis (Pearson, 1901), which finds the optimal orthogonal linear transformation matrix
to turn a set of potentially correlated input features into a set of uncorrelated variables.
When performing this transformation, the first and most prominent of these variables is
called the first principal component and captures the direction of the greatest variance
present in the data. The projection ensures that all succeeding components capture
increasingly smaller degrees of variability, essentially creating a ranking of the most
important orthogonal directions.

Given the covariance matrix Σ calculated on the zero-centered data matrix X̃, we
can calculate the eigendecomposition of Σ as follows

Σ = ΓΛΓT (3.6)

where Γ,Λ ∈ RD×D. Note that Γ is an orthonormal matrix containing the eigenvectors
of Σ as its columns while Λ is a diagonal matrix and contains the respective eigenvalues.
Dimensionality reduction can then be performed by matrix-multiplying the zero-centered
data matrix X̃ with the truncated eigenvector matrix ΓK (which only includes the first
K columns of Γ), formally

X̂ = X̃ΓK . (3.7)

A visual example of PCA can be found in Figure 3.5 (a).

Random Projections

While PCA finds the optimal projection for reducing dimensionality, computing this
projection might be exceedingly expensive for very high dimensional data. In some
scenarios, it is therefore desirable to accept larger reconstruction errors while at the same
time significantly improving runtime complexity.

Based on extensive empirical results, the idea of random projections emerged, in
which the data is reduced by transforming the data matrix X with a randomly populated
reduction matrix R as follows: X̂ = XR. While there is no guarantee that the
chosen projection matrix is orthogonal, a large amount of almost orthogonal subspaces
exist in high-dimensional spaces, which results in the fact that arbitrary vectors are
sufficiently orthogonal for many use cases. The core theoretical result backing these
insights is provided by the Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss,
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1984), stating that sufficiently high-dimensional points may be projected into a subspace
of lower dimension that approximately preserves pair-wise distances between data points.

As the entries of the randomly populated reduction matrix R are only required to
be zero-centered and i.i.d in order to preserve pair-wise distances, a couple of different
techniques for choosing an appropriate R have been explored. We briefly explain two of
these methods below.

Gaussian Random Projections When using Gaussian random projections, the en-
tries of R are sampled from a zero-mean normal distribution with variance σ2 = 1

K
,

formally
Rij ∼ N (0, 1

K
). (3.8)

Sparse Random Projections When using sparse random projections, the entries of
R are generated using the following rule set:

Rij =


+
√

v
K

with probability 1
2v

0 with probability 1 − 1
v

−
√

v
K

with probability 1
2v

(3.9)

where v = 1√
D

(Achlioptas, 2003; Li et al., 2006). A visual example of a random projection
matrix can be found in Figure 3.5 (b).

Autoencoders

Autoencoders (Ballard, 1987) are neural networks which are specifically designed to
perform dimensionality reduction on its inputs. The neural network can be conceptually
divided into two sub-networks, where the first network functions as an encoder into a
reduced representation, while the second network is used to project a reduced represen-
tation back into the original representation. The encoder and decoder are then jointly
optimized such that the latent representation contains as much information as possible
given the size reduction constraint.

Formally, an autoencoder consists of an encoding function ξ : X → H and a decoding
function ψ : H → X where the latent space H has lower dimensionality than the input
space X . Both functions are optimized such that the reconstruction loss is minimized,
i.e. we choose ξ and ψ such that latent codes contain as much information as possible
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under their size constraint:

ξ, ψ = arg min
ξ,ψ

∥X − (ψ ◦ ξ)X∥. (3.10)

An exemplary autoencoder architecture can be found in Figure 3.5 (c).
Plain autoencoders impose no specific restrictions on the latent dimension other than

its size being smaller than the input size. This constraint is crucial since non-reducing
autoencoders could potentially learn the identity function, resulting in useless latent
codes. Latent dimensions of the same or larger size than the input domain are only
a reasonable choice if sparsity is explicitly enforced in the latent layers (e.g. by using
the L1 loss), a strategy applied by sparse autoencoders (Makhzani and Frey, 2013).
Recently, a variational learning approach for latent variable modeling has been applied to
autoencoders, giving rise to variational autoencoders (Kingma and Welling, 2013). These
autoencoders however, do not merely function and compressors, but can also function
as a generative model by sampling a latent vector from the learned hidden state and
propagating that sample through the decoder network.

3.3.2 Outlier and Novelty Detection

Since both scenarios indicate a deviation from the expected norm, there exists a strong
connection between distribution shift detection and anomaly detection. While both
techniques try to assess whether incoming data can still be regarded coming from the
same population as so far seen data, anomaly detection usually assesses this condition on
every single sample. In contrast, distribution shift detection aims to capture top-level shift
dynamics. In this section, we will briefly explain two different kinds of anomaly detection
classes, outlier and novelty detection, and give pointers to popular methods for detecting
unusual observations. Anomaly detection is often also referred to as out-of-distribution
sample detection (see Chapter 2 for an overview of current methods).

The difference between novelty and outlier detection can be summarized as follows:

1. Novelty detection: The dataset used for learning the detector is assumed to be
pure and the main goal is to detect abnormal observations in new incoming data.

2. Outlier detection: The dataset itself is already contaminated with anomalies
and the main goal is to discriminate high- from low-density regions.

Most anomaly detection algorithms are applicable in both cases. Popular algorithms
for anomaly detection include the local outlier factor (LOF) (Breunig et al., 2000),
isolation forests (Liu et al., 2008), and the one-class SVM (Schölkopf et al., 2000).
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3.4 Statistical Foundations

Machine learning is heavily tied to many other disciplines in the natural sciences realm,
like mathematics, physics, and neuroscience. A particularly strong connection is held
to the field of statistics, which is concerned with collecting, presenting, and analyzing
various kinds of data. Large parts of machine learning are strongly dependent on basic
concepts in inferential statistics, such as deriving parameter estimates using maximum
likelihood estimation or Bayesian inference, constructing confidence intervals, carrying
out statistical hypothesis testing, and many more.

As we apply many statistical concepts as part of this thesis, especially statistical
hypothesis testing, we briefly outline some basic principles of statistics as part of this
section.

3.4.1 Statistical Model

A foundational building block of statistical inference is the statistical model, which
encodes a set of statistical assumptions about the observed data and its underlying
data-generating process. Although a statistical model is often thought of as an idealized
non-deterministic mathematical formulation, it allows for the derivation of many crucial
concepts in inferential statistics (Cox, 2006).

Formally, a statistical model is defined as a triplet M = (X ,S, (Pθ)θ∈Θ) where X is
the set of all possible observations (also called sample space), S is a σ-algebra defined
over X , and (Pθ)θ∈Θ is either a family of probability measures or a family of probability
distribution functions defined over (X ,S). If X is countable, then we call M discrete
with S = P(X ) being the power set of X and each Pθ is assigned a discrete density
ρθ : X → [0, 1] with x 7→ Pθ(x). If X is uncountable (e.g. X ⊂ RN), then we call M
continuous with S = BN

X being the Borel set of X and each Pθ is assigned a Lebesgue
density ρθ : X → R+. We further call a model M parametric (or U -dimensional) if
Θ ⊂ RU for any given U ∈ N. Note that U refers to the dimensionality of the model (i.e.
the total count of parameters we wish to estimate) while D refers to the dimensionality
of the data (i.e. the total count of distinct data features).

3.4.2 Statistical Hypothesis Testing

Given a statistical model M = (X ,S, (Pθ)θ∈Θ), we define a test problem as the disjoint
decomposition Θ = Θ0 ∪ Θ1 into the null hypothesis space Θ0 and an alternative
hypothesis space Θ1. A statistical hypothesis test H0 : θ ∈ Θ0 vs HA : θ ∈ Θ1 is then
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defined as a function S : X → {0, 1} with R := {X ∈ X : S(X) = 1} being the rejection
region of the test and A := {X ∈ X : S(X) = 0} being the acceptance region (Lehmann
and Romano, 2006). The null hypothesis H0 is thought of as stating the norm while the
alternative hypothesis HA states a deviation from the norm which we wish to test for.

When performing a statistical test we can encounter two different error cases:

• α error: We wrongly reject the null hypothesis, i.e. S(X) = 1 while θ ∈ Θ0.

• β error: We wrongly accept the null hypothesis, i.e. S(X) = 0 while θ ∈ Θ1.

When constructing tests, we wish to keep both the α and the β error as low as
possible. Unfortunately, it is not possible to simultaneously reduce both errors as a
reduction of either one of the two errors generally leads to an increase in the other
error. Luckily, we can get around this problem by minimizing both errors asymmetrically.
By first defining an acceptable significance level α ∈ (0, 1) (also called maximum α

error) and then enlisting all possible tests with that particular significance level, i.e. all
tests for which supθ∈Θ0 Pθ(R) ≤ α, we can then choose the most powerful test, i.e. the
test which maximizes the power function βS(θ) := Pθ(R) = E[S] for all θ ∈ Θ1 (which
simultaneously lowers the β error).

Statistical hypothesis testing is generally a multi-stage process consisting of the
following sequential steps:

1. Define an appropriate statistical model M for the collected data.

2. Define a null hypothesis H0 and an alternative hypothesis HA.

3. Choose a statistical significance threshold α (usually α ∈ {0.1, 0.05, 0.01}).

4. Choose an appropriate decision rule or test statistic S at the significance level α
which has maximum power.

5. Conduct the test and make a decision.

After having established the formal basis of statistical hypothesis testing, we can now
introduce a couple of specific tests which we use as part of our shift detection mechanism.

Binomial Test

The binomial test (Georgii, 2015) is a test which evaluates whether frequency observations
from two distinct categories (usually defined as success and failure) follow a predefined
theoretical distribution over the same categories. Given an absolute count of the successes
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Fig. 3.6 Binomial testing scenario.

X and the total sample size n, we can easily calculate the success probability p0. This
allows us to set up the (two-sided) hypothesis test for the unknown true success probability
p as follows:

H0 : p = p0 vs HA : p ̸= p0. (3.11)

Under the null hypothesis, X is Bin(p0, n)-distributed where

Bin(i|p0, n) = P (X = i) =
(
n

i

)
pi0(1 − p0)n−i. (3.12)

The binomial testing scenario is shown in Figure 3.6.
The binomial test is a parametric tests, which means that it assumes a specific data

distribution. Specifically, the binomial test assumes that the data follows a binomial
distribution. In cases where we have prior knowledge about the underlying data distribu-
tion, it is relatively straight-forward to come up with a corresponding parametric test.
Indeed, parametric tests are always favorable over non-parametric tests if the distribution
assumption holds, since it has been shown that parametric tests have more power is such
scenarios (Georgii, 2015). However, observed data does not always follow a presumed
distribution and some distributions are hard to estimate. For that purpose, we also
introduce two non-parametric tests, which we are going to use in the upcoming chapters.

Chi-Squared (χ2) Test

The chi-squared test (sometimes denoted χ2 test) (Greenwood and Nikulin, 1996) is used
to test whether some observed class-assignment frequencies roughly match the expected
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Table 3.1 Chi-Squared contingency table.

Sample Category 1 · · · Category J
∑

X1 n11 · · · n1J n11 + n12 + · · · + n1J = n1•
...

... . . . ...
...

XI nI1 · · · nIJ nI1 + nI2 + · · · + nIJ = nI•∑
n11 + · · · + nI1 = n•1 · · · n1J + · · · + nIJ = n•J n1• + n2• + · · · + nI• = n
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(b) Chi-Squared testing example for χ2
4.

Fig. 3.7 Chi-Squared testing scenario.

class-assignment frequencies. There exist three variations of the chi-squared test: (i) the
chi-squared goodness-of-fit test, (ii) the chi-squared test of homogeneity, and (iii) the
test of independence. For our subsequent use cases, the chi-squared test of homogeneity
is the most relevant one, which is why we introduce its most important details below.
Figure 3.7 visualizes the chi-squared testing scenario.

Given I-many datasets consisting of categorical samples {X1, . . . , XI} falling into
J-many categories and their corresponding categorical distribution functions {F1, . . . , FI},
we wish to test

H0 : F1 = F2 = . . . = FI vs HA : ∃ i ̸= j such that Fi ̸= Fj. (3.13)

The observed data {X1, . . . , XI} can be represented in an I × J contingency table (see
Table 3.1), effectively storing the absolute class frequencies for all datasets. Next, the
observed values are compared to the values which we would expect to observe under the
null hypothesis and decide for a rejection if the deviations are statistically significant.
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Fig. 3.8 Kolmogorov-Smirnov testing scenario.

The relevant test statistic X2 can be calculated using

X2 =
I∑
i=1

J∑
j=1

(nij − Eij)2

Eij
with Eij = ni• · n•j

n
. (3.14)

This test statistic is approximately chi-squared distributed with (I − 1)(J − 1) degrees
for freedom, formally X2 ∼ χ2

(I−1)(J−1).

Kolmogorov-Smirnov Test

While we are going to use both the binomial test and the chi-squared test as proxies
for detecting distribution shift, the Kolmogorov-Smirnov (KS) test (Massey Jr, 1951) is
explicitly designed to test whether two probability distributions match. Similar to the
chi-squared test, the KS test comes in two flavors: (i) the (1-sample) KS goodness-of-fit
test which evaluates whether collected data follows a presumed distribution; and (ii)
the two-sample KS test which evaluates whether two different datasets follow the same
distribution. A visual comparison of the two approaches is given in Figure 3.8. For our
work, we found the two-sample KS test particularly useful, which is why we explain the
key workings of the KS test using the two-sample formulation.

The two-sample KS test explicitly tests for a difference in distribution between two
sample sets, i.e.

H0 : F1(z) = F2(z′) vs HA : F1(z) ̸= F2(z′) (3.15)
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where F1 and F2 correspond to the empirical cumulative distribution functions (ECDF)
of the two distributions we wish to test for equality. The ECDF for a data vector z with
I-many elements is given by

F (z) = 1
I

I∑
i=1

I(−∞,x](zi) (3.16)

where IA(X) → {0, 1} is the indicator of event A.
The KS test statistic is then given by the largest distance between the two ECDFs,

formally
Z = sup

z
|F1(z) − F2(z)|. (3.17)

The null hypothesis is going to be rejected if

Z >

√
−1

2 lnα
√
N1 +N2

N1N2
(3.18)

where α again corresponds to the significance level of the test and N1 and N2 correspond
to the sample sizes of the two respective distributions.

3.4.3 Multiple Hypothesis Testing

As part of the shift detection approach we are going to propose in Chapter 4, we might
have to perform multiple simultaneous statistical inferences on the same sample. Since it
is increasingly more likely to draw erroneous inferences the more inferences are being
made based on the same dataset, effectively inflating the global α-error, we need to
correct for multiple hypothesis testing on the same sample (Rupert Jr et al., 2012).

Different ways of accounting for the multiple hypothesis testing problem have been
proposed, with most approaches either bounding the Family-Wise Error Rate (FWER)
or the False Discovery Rate (FDR).

Family-Wise Error Rate (FWER)

The most stringent control in multiple hypothesis testing is given by procedures controlling
the FWER, which limits the probability of making at least one false positive, formally

FWER = P (V ≥ 1) < α (3.19)

where V is the total amount of false discoveries (Hochberg, 1987).
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The Bonferroni Correction One of the easiest and at the same time most conserva-
tive corrections is given by the Bonferroni correction, which bounds the family-wise error
rate by distributing the global α equally among the K-many tests. Given a family of
hypotheses {H1, . . . , HK} and their corresponding p-values {p1, . . . , pK}, the Bonferroni
correction rejects the global null hypothesis if any pi ≤ α

K
. The shift detection procedure

proposed by us makes explicit use of the Bonferroni correction.
Other approaches for bounding the FWER include but are not limited to the Šidák

correction (Šidák, 1967), Tukey’s range test (Tukey et al., 1949), the Holm-Bonferroni
method (Holm, 1979), and Hochberg’s step-up procedure (Hochberg).

False Discovery Rate (FDR)

A less stringent but more powerful alternative to the FWER is the FDR, which limits
the expected proportion of false positives, formally

FDR = E
[
V

M

]
< α (3.20)

where M is the total amount of discoveries. Popular approaches for bounding the
FDR include but are not limited to the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995) and the Benjamini-Yekutieli procedure (Benjamini et al., 2001).



Chapter 4

Distribution Shift Detection

4.1 Distribution Shifts

They key question distribution shift detection aims to answer is whether the data
generating distribution of the two environments is in fact the same. Formally, we wish to
determine whether the source distribution p over data points x ∈ X and labels y ∈ y

matches the target distribution q over data points x′ ∈ X ′ and labels y′ ∈ y′, formally

p(x, y) ?= q(x′, y′). (4.1)

Since test data is unlabeled in real-life settings, it is usually not possible to directly assess
whether the joint distribution between data points and true labels differs between the
two environments. Instead, we often only have estimates ŷ′ of the true label y′ at our
disposal, altering the problem formulation as follows:

p(x, y) ?= q(x′, ŷ′). (4.2)

If data was collected in an unsupervised fashion (or when we simply intend to analyze
the data in an unsupervised manner), the shift detection question simplifies to

p(x) ?= q(x′). (4.3)

Next, we introduce some basic shifts. To that end, we borrow heavily from Sugiyama
et al. (2017). More complex shifts, such as sample selection bias, domain shift, and
source component shift are described extensively in their work.
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Fig. 4.1 Covariate and label shift visualized (Sugiyama et al., 2017). If the distribution
of a variable may change between the source and the target domain the respective node
is shown in gray in the causal graphical model. Blue circles in the example plots indicate
source samples, green squares indicate target samples.

4.1.1 Covariate Shift

Under the covariate shift model, only the distribution over covariates x (i.e. the input
features) changes between the two domains, i.e. p(x) ̸= q(x), while the conditional
label distribution remains fixed, i.e. p(y|x) = q(y|x). As is expected, this shift in the
covariates also leads to a shift in the joint probability distribution:

[p(x) ̸= q(x) ∧ p(y|x) = q(y|x)] ⇒ p(y|x)p(x) ̸= q(y|x)q(x) ⇒ p(x, y) ̸= q(x, y) (4.4)

Both a causal graphical model as well as an example of covariate shift is shown in Figure
4.1 (a) and (b).
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4.1.2 Label Shift

Under the label shift model, only the distribution over labels y changes between the two
domains, i.e. p(y) ̸= q(y), while the conditional covariate distribution remains fixed, i.e.
p(x|y) = q(x|y). As is expected, this shift in the labels also leads to a shift in the joint
probability distribution:

[p(y) ̸= q(y) ∧ p(x|y) = q(x|y)] ⇒ p(x|y)p(y) ̸= q(x|y)q(y) ⇒ p(x, y) ̸= q(x, y) (4.5)

This type of shift is sometimes also referred to as prior probability shift or target shift.
Both a causal graphical model as well as two examples of label shift is shown in Figure
4.1 (c), (d), and (e).

4.1.3 Concept Drift

Under the concept drift model, either one of the conditional distribution over the covariates
or the labels changes, i.e. p(y|x) ̸= q(y|x) or p(x|y) ̸= q(x|y), while the marginals remain
fixed, i.e. p(x) = q(x) or p(y) = q(y). As is expected, this shift also leads to a shift in
the joint probability distribution. It affects the joint distribution as follows in the case of
a changing label conditional

[p(y|x) ̸= q(y|x) ∧ p(x) = q(x)] ⇒ p(y|x)p(x) ̸= q(y|x)q(x) ⇒ p(x, y) ̸= q(x, y) (4.6)

and as follows in the case of a changing covariate conditional:

[p(x|y) ̸= q(x|y) ∧ p(y) = q(y)] ⇒ p(x|y)p(y) ̸= q(x|y)q(y) ⇒ p(x, y) ̸= q(x, y) (4.7)

4.1.4 The Need for Shift Detection

As noted by Sugiyama et al. (2017), there is an inherent need for methods to first
detect the mere presence of distribution shift and, as a consequence, characterize the
shift in a second step. While methods explicitly developed to address covariate or label
shift are usually favorable to use since their explicit assumption allows them to derive
mathematically sound algorithms for addressing shift, they can lead to false predictions
if these assumptions are not met. Also, pure covariate or label shifts rarely occur in
real life settings, which is why techniques designed to correct for only one type of shift
has only limited applicability in practice. At the same time, it would be desirable for
a general purpose detection scheme to seamlessly fit into the existing machine learning
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pipeline. As we will see in the subsequent sections, our proposed method is capable of
achieving both of these desiderata.

4.2 Shift Detection on Dimensionality-Reduced Rep-
resentations

Given labeled data {(x1, y1), ..., (xn, yn)} ∼ p and unlabeled data {x′
1, ...,x

′
m} ∼ q, our

task is to determine whether p(x) equals q(x′):

H0 : p(x) = q(x′) vs HA : p(x) ̸= q(x′). (4.8)

Chiefly, we explore the following design considerations: (i) what representation to
run the test on; (ii) which two-sample test to run; (iii) when the representation is
multidimensional; whether to run multivariate or multiple univariate two-sample
tests; and (iv) how to combine their results.

4.2.1 Dimensionality Reduction

We now introduce the multiple dimensionality reduction (DR) techniques that we compare
vis-a-vis their effectiveness in shift detection (in concert with two-sample testing). Note
that absent assumptions on the data, these mappings, which reduce the data dimensional-
ity from D to K (with K ≪ D), are in general surjective, with many inputs mapping to
the same output. Thus, it is trivial to construct pathological cases where the distribution
of inputs shifts while the distribution of low-dimensional latent representations remains
fixed, yielding false negatives. However, we speculate that in a non-adversarial setting,
such shifts may be exceedingly unlikely. Thus our approach is (i) empirically motivated;
and (ii) not put forth as a defense against worst-case adversarial attacks.

No Reduction (NoRed ) To justify the use of any DR technique, our default
baseline is to run tests on the original raw features.

Principal Components Analysis (PCA ) Principal components analysis is a
standard tool that finds an optimal orthogonal transformation matrix R such that points
are linearly uncorrelated after transformation. This transformation is learned in such
a way that the first principal component accounts for as much of the variability in the
dataset as possible, and that each succeeding principal component captures as much
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of the remaining variance as possible subject to the constraint that it be orthogonal to
the preceding components. Formally, we wish to learn R given X under the mentioned
constraints such that X̂ = XR yields a more compact data representation.

Sparse Random Projection (SRP ) Since computing the optimal transformation
might be expensive in high dimensions, random projections are a popular DR technique
which trade a controlled amount of accuracy for faster processing times. Specifically, we
make use of sparse random projections, a more memory- and computationally-efficient
modification of standard Gaussian random projections. Formally, we generate a random
projection matrix R and use it to reduce the dimensionality of a given data matrix X,
such that X̂ = XR.

Autoencoders (TAE and UAE ) We compare the above-mentioned linear
models to non-linear reduced-dimension representations using both trained (TAE) and
untrained autoencoders (UAE). Formally, an autoencoder consists of an encoder function
ξ : X → H and a decoder function ψ : H → X where the latent space H has lower
dimensionality than the input space X . As part of the training process, both the encoding
function ξ and the decoding function ψ are learned jointly to reduce the reconstruction
loss: ξ, ψ = arg minξ,ψ ∥X − (ψ ◦ ξ)X∥2.

Label Classifiers (BBSDs ◁ and BBSDh ▷) Motivated by recent results achieved
by black box shift detection (BBSD) (Lipton et al., 2018), we also propose to use the
outputs of a (deep network) label classifier trained on source data as our dimensionality-
reduced representation. We explore variants using either the softmax outputs (BBSDs)
or the hard-thresholded predictions (BBSDh) for subsequent two-sample testing. Since
both variants provide differently sized output (with BBSDs providing an entire softmax
vector and BBSDh providing a one-dimensional class prediction), different statistical
tests are carried out on these representations. Also note that while we do not have access
to either true or estimated labels in the other dimensionality reduction methods, we can
predict labels using the trained label classifier, which is why our formal testing setup for
BBSD changes to

H0 : p(x, y) = q(x′, ŷ′) vs HA : p(x, y) ̸= q(x′, ŷ′). (4.9)
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Fig. 4.2 Additional dimensionality reduction methods explored in this study.

Domain Classifier (Classif ×) Here, we attempt to detect shift by explicitly train-
ing a domain classifier to discriminate between data from source and target domains.
To this end, we partition both the source data and target data into two halves, using the
first to train a domain classifier to distinguish source (class 0) from target (class 1) data.
We then apply this model to the second half conducting a significance test to determine
if the classifier’s performance is different from random chance.

4.2.2 Statistical Hypothesis Testing

The DR techniques each yield a representation, either uni- or multi-dimensional, and
either continuous or discrete, depending on the method. The next step is to choose a
suitable statistical hypothesis test for each of these representations.

Multivariate Two-Sample Tests: Maximum Mean Discrepancy (MMD): For
all multi-dimensional representations, we evaluate the Maximum Mean Discrepancy, a
popular kernel-based technique for multivariate two-sample testing. MMD allows us to
distinguish between two probability distributions p and q based on the mean embeddings
µp and µq of the distributions in a reproducing kernel Hilbert space F , formally

MMD(F , p, q) = ||µp − µq||2F . (4.10)
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Given samples from both distributions, we can calculate an unbiased estimate of the
squared MMD statistic as follows

MMD2 = 1
m(m− 1)

m∑
i=1

m∑
j ̸=i

κ(xi,xj) + 1
n(n− 1)

n∑
i=1

n∑
j ̸=i

κ(x′
i,x

′
j)

− 2
mn

m∑
i=1

n∑
j=1

κ(xi,x
′
j)

(4.11)

where we use a squared exponential kernel κ(x1,x2) = e− 1
2 ∥x1−x2∥2 . A p-value can then

be obtained by carrying out a permutation test on the resulting kernel matrix.

Multiple Univariate Testing: Kolmogorov-Smirnov (KS) Test + Bonferroni
Correction: As a simple baseline alternative to MMD, we consider the approach
consisting of testing each of the K dimensions separately (instead testing over all
dimensions jointly). Here, for continuous data, we adopt the Kolmogorov-Smirnov (KS)
test, a non-parametric test whose statistic is calculated by computing the largest difference
Z of the cumulative density functions (CDFs) over all values z as follows:

Z = sup
z

|Fp(z) − Fq(z)| (4.12)

where Fp and Fq are the empirical CDFs of the source and target data, respectively.
Under the null hypothesis, Z follows the Kolmogorov distribution.

Since we carry out a KS test on each of the K components, we must subsequently
combine the p-values from each test, raising the issue of multiple hypothesis testing.
As we cannot make strong assumptions about the (in)dependence among the tests, we
rely on a conservative aggregation method, notably the Bonferroni correction (Bland
and Altman, 1995), which rejects the null hypothesis if the minimum p-value among all
tests is less than α/K (where α is the significance level of the test). While several less
conservative aggregations methods have been proposed (Heard and Rubin-Delanchy, 2018;
Loughin, 2004; Simes, 1986; Vovk and Wang, 2018; Zaykin et al., 2002), they typically
require assumptions on the dependencies among the tests. Moreover, even using the
conservative test, in our experiments, the univariate approach generally outperformed
kernel two-sample testing given identical representations (see Chapter 6).

Categorical Testing: Chi-Squared Test: For the hard-thresholded label classifier
(BBSDh), we employ Pearson’s chi-squared test, a parametric tests designed to evaluate
whether the frequency distribution of certain events observed in a sample is consistent with
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a particular theoretical distribution. Specifically, we use a test of homogeneity between
the class distributions (expressed in a contingency table) of source and target data. The
testing problem can be formalized as follows: Given a contingency table with 2 rows (one
for absolute source and one for absolute target class frequencies) and C columns containing
observed counts Oij, the expected frequency under the independence hypothesis for a
particular cell is Eij = Nsumpi•p•j with Nsum being the sum of all cells in the table,
pi• = Oi•

Nsum
= ∑c

j=1
Oij

Nsum
being the fraction of row totals, and p•j = O•j

Nsum
= ∑r

i=1
Oij

Nsum

being the fraction of column totals. The relevant test statistic X2 can be computed as

X2 =
2∑
i=1

C∑
j=1

(Oij − Eij)2

Eij
(4.13)

which, under the null hypothesis, follows a chi-squared distribution with C − 1 degrees
of freedom: X2 ∼ χ2

C−1.

Binomial Testing: For the domain classifier, we simply compare its accuracy (acc)
on held-out data to random chance via a binomial test. Formally, we set up a testing
problem H0 : acc = 0.5 vs HA : acc ̸= 0.5. Under the null hypothesis, the accuracy of the
classifier follows a binomial distribution: acc ∼ Bin(Nsamp, 0.5), where Nsamp corresponds
to the number of held-out samples.

4.2.3 Obtaining Most Anomalous Samples

As our detection framework does not detect outliers but rather aims at capturing top-
level shift dynamics, it is not possible for us to decide whether any given sample is
in- or out-of-distribution. However, we can still provide an indication of what typical
samples from the shifted distribution look like by harnessing domain assignments from
the domain classifier. Specifically, we can identify the exemplars which the classifier
was most confident in assigning to the target domain. Hence, whenever the binomial
test signals a statistically significant accuracy deviation from chance, we can use use the
domain classifier to obtain the most anomalous samples and present them to the user.

In contrast to the domain classifier, the other shift detectors do not base their shift
detection potential on explicitly deciding which domain a single sample belongs to,
instead comparing entire distributions against each other. While we did explore initial
ideas on identifying samples which if removed would lead to a large increase in the overall
p-value, the results we obtained were unremarkable.
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4.2.4 Determining the Malignancy of a Shift

Theoretically, absent further assumptions, distribution shifts can cause arbitrarily severe
degradation in performance. However, in practice distributions shift constantly, and often
these changes are benign. Practitioners should therefore be interested in distinguishing
malignant shifts that damage predictive performance from benign shifts that negligibly
impact performance. Although prediction quality can be assessed easily on source data
on which the black-box model f(·) was trained, we are not able compute the target error
directly without labels. We therefore explore heuristic methods for approximating the
target performance through the following two methods:

1) Difference classifier assignments: In case no prior knowledge about the nature
of the shift is available, the black-box model’s accuracy on the labeled top anomalous
samples can serve as a standalone implicit characterization of the shift. Also, since
the difference classifier picks up on the most noticeable deviations, the label classifier’s
accuracy on the top anomalous samples functions as a worst-case bound on the model’s
accuracy under the identified shift type.

2) Domain expert: Alternatively, we can get hints about the target accuracy by
evaluating the classifier on held-out source data that has been explicitly perturbed
by a function determined by a domain expert to be representative of the sort of
perturbations expected to occur at test time. The better this function captures the
kinds of perturbations encountered in the target domain, the better the clue given
by this method. The domain expert can further use the predictions yielded by the
difference classifier to gain additional insights into the qualitative nature of the shift.



Chapter 5

Experimental Setup

5.1 General setup

Our experiments were carried out on the MNIST (Ntr = 50000; Nval = 10000; Nte = 10000;
D = 28 × 28 × 1; C = 10 classes) (LeCun et al., 1998) and CIFAR-10 (Ntr = 40000;
Nval = 10000; Nte = 10000; D = 32 × 32 × 3; C = 10 classes) (Krizhevsky and Hinton,
2009) image datasets. For the autoencoder (UAE & TAE) experiments, we employ a
convolutional architecture with 3 convolutional layers and 1 fully-connected layer. For
both the label and the domain classifier we use a ResNet-18 (He et al., 2016). We train
all networks (TAE, BBSDs, BBSDh, Classif) using stochastic gradient descent with
momentum in batches of 128 examples over 200 epochs with early stopping.

For PCA, SRP, UAE, and TAE, we reduce dimensionality to K = 32 latent dimensions,
which for PCA explains roughly 80% of the variance in the CIFAR-10 dataset. The
label classifier BBSDs reduces dimensionality to the number of classes C. Both the
hard label classifier BBSDh and the domain classifier Classif reduce dimensionality to a
one-dimensional class prediction, where BBSDh predicts label assignments and Classif
predicts domain assignments.

To challenge our detection methods, we simulate a variety of shifts, affecting both
the covariates and the label proportions. For all shifts, we evaluate the various methods’
abilities to detect shift at a significance level of α = 0.05. We also include the no-shift
case to check against false positives. We randomly split all of the data into training,
validation, and test sets according to the indicated proportions Ntr, Nval, and Nte and
then apply a particular shift to the test set only. In order to qualitatively quantify
the robustness of our findings, shift detection performance is averaged over a total of 5
random splits, which ensures that we apply the same type of shift to different subsets
of the data. The selected training data used to fit the DR methods is kept constant
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across experiments with only the splits between validation and test changing across
the random runs. Note that DR methods are learned using training data, while shift
detection is being performed on dimensionality-reduced representations of the validation
and the test set. We evaluate the models with various amounts of samples from the test
set s ∈ {10, 20, 50, 100, 200, 500, 1000, 10000}. Because of the unfavorable dependence
of kernel methods on the dataset size, we run these methods only up until 1000 target
samples have been acquired.

5.2 Shift Simulation

For each shift type (as appropriate) we explored three levels of shift intensity (e.g. the
magnitude of added noise) and various percentages of affected data δ ∈ {0.1, 0.5, 1.0}.
Specifically, we explore the following types of shifts:

(i) Adversarial shift (adv_shift): We turn a given percentage δ of test samples
into adversarial examples via the fast gradient sign method (Goodfellow et al.,
2014);

(ii) Knock-out shift (ko_shift): We remove a fraction δ of data points from class
c = 0, creating class imbalance (Lipton et al., 2018);

(iii) Gaussian noise shift (gn_shift): We corrupt covariates of a fraction δ of test
set samples by Gaussian noise centered on the datapoint with standard deviation
σ ∈ {1, 10, 100} (denoted small_gn_shift, medium_gn_shift, and large_gn_shift);

(iv) Image shift (img_shift): We also consider more natural shifts to images, mod-
ifying a fraction δ of images with combinations of random amounts of rotations
{10, 40, 90}, (x, y)-axis-translation percentages {0.05, 0.2, 0.4}, as well as zoom-
in percentages {0.1, 0.2, 0.4} (denoted small_img_shift, medium_img_shift, and
large_img_shift);

(v) Image shift + knock-out shift (medium_img_shift+ ko_shift): In addi-
tion to pure covariate or label shifts, we also explore test sets which are affected
by both shifts at the same time. Here, we apply a fixed medium image shift with
δ1 = 0.5 and a variable knock-out shift δ;

(vi) Only-zero shift + image shift (only_zero_shift+ medium_img_shift):
Here, we only include images from class c = 0 in combination with a variable
medium image shift affecting only a fraction δ of the data;
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(vii) Original splits: We evaluate our detectors on the original source/target splits
provided by the creators of MNIST, CIFAR-10, Fashion MNIST, and SVHN datasets
(assumed to be i.i.d.);

(viii) Domain adaptation datasets: Finally, we also consider data from the domain
adaptation task transferring from MNIST (source) to USPS (target) (Ntr = Nval =
Nte = 1000; D = 16 × 16 × 1; C = 10 classes) (Long et al., 2013) as well as data
from the COIL-10 dataset (Ntr = Nval = Nte = 2400; D = 32 × 32 × 3; C = 10
classes, a modification of the COIL-100 dataset which only includes the first 10
classes) (Nene et al., 1996) where images between 0◦ and 175◦ are sampled by the
source and images between 180◦ and 355◦ are sampled by the target distribution.



Chapter 6

Discussion

We now discuss the salient findings from our empirical investigation.

6.1 Univariate vs multivariate tests

We first evaluate whether we can detect shifts more easily using multiple univariate tests
and aggregating their results via the Bonferroni correction or by using multivariate kernel
tests. We were surprised to find that across DR methods, aggregated univariate tests
outperformed multivariate tests (see Tables 6.1, 6.2, 6.3, and 6.4).

6.2 Dimensionality reduction methods

For each testing method and experimental setting, we evaluate which DR technique is
best suited for shift detection. In the multiple-univariate-testing case (and thus overall),
BBSDs was the best-performing DR method. In the multivariate-testing case, the
autoencoders (UAE and TAE) performed best. In both cases, these methods consistently
outperformed others across sample sizes. The domain classifier performs badly in the low-
sample regime (≤ 100 samples), but catches up as more samples are obtained. Noticeably,
the multivariate test performs poorly in the no reduction case, especially on CIFAR-10,
perhaps owing to the high dimensionality of the dataset. Table 6.1 summarizes these
results.
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Table 6.1 Detection accuracy of different dimensionality reduction techniques across all
simulated shifts on MNIST and CIFAR-10. Green bold entries indicate the best DR
method at a given sample size, red italic the worst. Underlined entries indicate accuracy
values larger than 0.5.

Test DR
Number of samples from test

10 20 50 100 200 500 1,000 10,000

U
ni

v.
te

st
s

NoRed 0.18 0.25 0.36 0.39 0.45 0.49 0.57 0.70
PCA 0.13 0.22 0.25 0.30 0.35 0.41 0.46 0.58
SRP 0.18 0.21 0.27 0.32 0.37 0.46 0.53 0.61
UAE 0.20 0.25 0.33 0.42 0.48 0.54 0.65 0.74
TAE 0.20 0.26 0.37 0.45 0.44 0.53 0.58 0.67

BBSDs 0.29 0.38 0.43 0.49 0.55 0.61 0.66 0.72

χ2 BBSDh 0.14 0.18 0.23 0.26 0.32 0.41 0.47 0.48
Bin Classif 0.04 0.09 0.10 0.10 0.28 0.38 0.47 0.66

M
ul

tiv
.

te
st

s NoRed 0.00 0.00 0.00 0.04 0.15 0.15 0.18 –
PCA 0.01 0.05 0.09 0.11 0.15 0.22 0.28 –
SRP 0.00 0.00 0.03 0.08 0.13 0.14 0.19 –
UAE 0.19 0.26 0.36 0.36 0.42 0.49 0.59 –
TAE 0.19 0.22 0.36 0.44 0.46 0.50 0.58 –

BBSDs 0.16 0.19 0.23 0.31 0.30 0.43 0.48 –

6.3 Shift types

Table 6.2 lists shift detection accuracy values for each distinct shift as an increas-
ing amount of samples is obtained from the target domain. Specifically, we see that
large_gn_shift, medium_gn_shift, large_img_shift, medium_img_shift+ko_shift, and
only_zero_shift+medium_img_shift are easily detectable even with few samples, while
small_gn_shift, medium_gn_shift, adv_shift, and ko_shift are hard to detect even with
many samples. With a few exceptions, the best DR technique (BBDSs for multiple
univariate tests, UAE & TAE for multivariate tests) is significantly faster and more
accurate at detecting shift than the mean of all dimensionality reduction methods.

6.4 Shift intensity

Based on the results in Table 6.3, we can conclude that the small shifts (small_gn_shift,
small_img_shift, and ko_shift) are harder to detect than medium shifts (medium_gn_shift,
medium_img_shift, and adv_shift) which in turn are harder to detect than large shifts
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Table 6.3 Detection accuracy for small, medium, and large simulated shifts on MNIST
and CIFAR-10 using univariate tests + Bonferroni correction on BBSDs. Reported
accuracy values are results of the best DR technique (univariate: BBSDs, multivariate:
mean of UAE and TAE). Underlined entries indicate accuracy values larger than 0.5.

Test Intensity
Number of samples from test

10 20 50 100 200 500 1,000 10,000

U
ni

v. Small 0.06 0.11 0.13 0.15 0.23 0.3 0.38 0.52
Medium 0.17 0.29 0.37 0.42 0.47 0.56 0.58 0.69

Large 0.59 0.7 0.76 0.88 0.91 0.94 0.99 1.00

M
ul

tiv
. Small 0.07 0.08 0.18 0.20 0.21 0.24 0.32 –

Medium 0.17 0.20 0.27 0.28 0.37 0.44 0.53 –
Large 0.34 0.44 0.59 0.67 0.73 0.80 0.89 –

(large_gn_shift, large_img_shift, medium_img_shift+ko_shift, and only_zero_shift+
medium_img_shift). Specifically, we see that large shifts can on average already be
detected with better than chance accuracy at only 10 samples in the multiple univariate
testing setting. Medium and small shifts require orders of magnitude more samples in
order to achieve similar accuracy.

6.5 Test sample size

As we can clearly see from the results in Tables 6.1, 6.2, 6.3, and 6.4, the more samples
we obtain from the target domain, the better we can detect shifts.

6.6 Most Anomalous Samples and Shift Malignancy

Across all experiments, we observed that the most different and most similar examples
returned by the difference classifier are useful in characterizing the shift qualitatively (see
Appendix A for detailed documentation). Furthermore, we can successfully distinguish
malignant from benign shifts using labeled top anomalous samples by using the framework
proposed in Section 4.2.4.



6.7 Original splits 42

Table 6.4 Detection accuracy for low (10%), medium (50%), and high (100%) percentages
of perturbed target samples across all shifts on MNIST and CIFAR-10. Reported accuracy
values are results of the best dimensionality reduction technique (univariate: BBSDs,
multivariate: mean of UAE and TAE). Underlined entries indicate accuracy values larger
than 0.5.

Test Percentage
Number of samples from test

10 20 50 100 200 500 1,000 10,000

U
ni

v. 10% 0.19 0.20 0.25 0.34 0.36 0.41 0.48 0.56
50% 0.28 0.42 0.49 0.56 0.60 0.61 0.70 0.80
100% 0.41 0.54 0.55 0.60 0.70 0.81 0.82 0.82

M
ul

tiv
. 10% 0.14 0.15 0.24 0.27 0.29 0.31 0.41 –

50% 0.20 0.22 0.39 0.41 0.45 0.54 0.61 –
100% 0.26 0.38 0.46 0.54 0.60 0.68 0.76 –

6.7 Original splits

According to our tests, the original splits from the MNIST dataset appear to exhibit a
dataset shift. After inspecting the most anomalous samples returned by the difference
classifier, we observed that many of these samples depicted the digit 6. A mean-difference
plot (see Figure 6.1) between sixes from the training set and sixes from the test set
revealed that the training instances are rotated slightly to the right, while the test
samples are drawn more open and centered. To back up this claim even further, we
also carried out a two-sample KS test between the two sets of sixes in the input space
and found that the two sets can conclusively be regarded as different with a p-value of
2.7 · 10−10, significantly undercutting the respective Bonferroni threshold of 6.3 · 10−5.
While this particular shift does not look practically significant to the human eye (and is
also declared harmless by our malignancy detector), this result however still shows that
the original MNIST split is not truly i.i.d.

6.8 Individual Examples

While full results are presented in the supplementary material, we briefly present two
illustrative results in detail:
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Fig. 6.1 Difference plot for training and test set sixes.

6.8.1 Synthetic medium image shift on MNIST (Figure 6.2)

From subfigures (a)-(c), we see that most methods are able to detect the simulated shift
with BBSDs being the quickest method for all tested perturbation percentages. We
further observe in subfigures (d)-(f) that the true target accuracy increasingly deviates
from the model’s performance on source data as more samples are perturbed. Since
the true target accuracy is usually unknown, we use the accuracy obtained on the top
anomalous labeled instances returned by the domain classifier. As we can see, the
obtainable accuracy on the samples returned by the difference classifier significantly
deviates from the accuracy obtained on source data, which is why we consider this shift
harmful to the label classifier’s performance.

6.8.2 Rotation angle partitioning on COIL-10 (Figure 6.3)

Subfigures (a) and (b) show that our testing framework correctly claims the randomly
shuffled dataset containing images from all angles to not contain a shift, while it iden-
tifies the partitioned dataset to be noticeably different. However, as we can see from
subfigure (e), this shift does not harm the classifier’s performance, meaning that the
classifier can safely be deployed even when encountering this specific dataset shift.
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(b) Shift test with 50% per-
turbed test data.
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(e) Classification accuracy on
50% perturbed data.
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(g) Top different samples. (h) Top similar samples.

Fig. 6.2 Shift detection results for medium image shift on MNIST. Subfigures (a)-(c) show
the p-value evolution of the different DR methods with varying percentages of perturbed
data, while subfigures (d)-(f) show the obtainable accuracies over the same perturbations.
Subfigures (g) and (h) show the most different and most similar exemplars returned by
the domain classifier across perturbation percentages. Plots show mean values obtained
over 5 random runs with a 1-σ error-bar.
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(a) Shift test with randomly
shuffled sets containing images
from all angles.
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(b) Shift test with angle parti-
tioned source and target sets.

(c) Top different sam-
ples.
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Fig. 6.3 Shift detection results on COIL-10 dataset. Subfigure organization is similar to
Figure 6.2.



Chapter 7

Conclusion & Future Work

7.1 Summary

In this thesis, we put forth a comprehensive empirical investigation, examining the ways
in which dimensionality reduction and two-sample testing might be combined to produce
a practical pipeline for detecting distribution shift in real-life machine learning systems.
Our results yielded the surprising insights that (i) black-box shift detection with soft
predictions works well across a wide variety of scenarios, even when the underlying
assumption of invariant class-conditional distributions does not hold; (ii) that given a
suitable low-dimensional representation for shift detection, aggregated univariate tests
performed separately on each latent dimension outperform multivariate two-sample tests,
even when aggregated conservatively; and (iii) that harnessing predictions made by a
domain-discriminating classifier enables the characterization of the shift’s nature and
malignancy.

7.2 Future Work

Our work suggests several open questions that might offer promising paths for future
work:

(i) Can we characterize shifts even better? While the presented approaches for shift
characterization and malignancy detection already provide valuable insights into
the nature of the shift, we believe that future works should look into either (1)
decreasing the amount of samples needed for a successful qualitative characterization
of the shift; or (2) relaxing the requirement of obtaining labels for the top anomalous
samples.
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(ii) How do we detect shifts in online data? Since data often arrives in a continuous
stream, adapting our detection scheme to deal with online data would be an
important addition. By doing so, we would need to account for and exploit the high
degree of correlation between adjacent time steps, known as multiple-hypothesis-
testing over time. Recently, Howard et al. (2018) provided some interesting insights
on how to design nonparametric, time-evolving confidence intervals, which are
correct at every single time-step.

(iii) How does the proposed detection scheme work in other domains? As we have mostly
explored a standard image classification setting for our experiments, it would be
interesting to see how our method performs on problem classes in other machine
learning domains, such as natural language processing or graphs.
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Appendix A

Detailed Shift Detection Results

Our complete shift detection results in which we evaluate different kinds of shifts on
MNIST and CIFAR-10 using the proposed methods are documented below. In addition
to our artificially generated shifts, we also evaluated our testing procedure on the original
splits provided by MNIST, Fashion MNIST, CIFAR-10, and SVHN, as well as on the
outlined domain adaptation datasets.
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A.1 Artificially Generated Shifts

A.1.1 MNIST

Adversarial Shift

101 102 103 104

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(a) 10% adversarial samples.

101 102 103 104

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(b) 50% adversarial samples.

101 102 103 104

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

NoRed

PCA

SRP

UAE

TAE

BBSDs

BBSDh

Classif

(c) 100% adversarial samples.

101 102 103 104

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

(d) 10% adversarial samples.

101 102 103 104

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

(e) 50% adversarial samples.

101 102 103 104

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy Source

Target

Classif
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(g) Top different samples. (h) Top similar samples.

Fig. A.1 MNIST adversarial shift, univariate two-sample tests + Bonferroni aggregation.
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Fig. A.2 MNIST adversarial shift, multivariate two-sample tests.
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Knock-Out Shift
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Fig. A.3 MNIST knock-out shift, univariate two-sample tests + Bonferroni aggregation.
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Fig. A.4 MNIST knock-out shift, multivariate two-sample tests.
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Large Gaussian Noise Shift
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(a) 10% perturbed samples.
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(c) 100% perturbed samples.
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(g) Top different samples. (h) Top similar samples.

Fig. A.5 MNIST large Gaussian noise shift, univariate two-sample tests + Bonferroni
aggregation.
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(c) 100% perturbed samples.

Fig. A.6 MNIST large Gaussian noise shift, multivariate two-sample tests.
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Medium Gaussian Noise Shift
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.
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(f) 100% perturbed samples.

(g) Top different samples. (h) Top similar samples.

Fig. A.7 MNIST medium Gaussian noise shift, univariate two-sample tests + Bonferroni
aggregation.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Fig. A.8 MNIST medium Gaussian noise shift, multivariate two-sample tests.
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Small Gaussian Noise Shift
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.
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(f) 100% perturbed samples.

(g) Top different samples. (h) Top similar samples.

Fig. A.9 MNIST small Gaussian noise shift, univariate two-sample tests + Bonferroni
aggregation.
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(c) 100% perturbed samples.

Fig. A.10 MNIST small Gaussian noise shift, multivariate two-sample tests.
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Large Image Shift
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.
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(d) 10% perturbed samples.
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(e) 50% perturbed samples.
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(f) 100% perturbed samples.

(g) Top different samples. (h) Top similar samples.

Fig. A.11 MNIST large image shift, univariate two-sample tests + Bonferroni aggregation.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Fig. A.12 MNIST large image shift, multivariate two-sample tests.
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Medium Image Shift
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.
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(d) 10% perturbed samples.
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(e) 50% perturbed samples.
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(f) 100% perturbed samples.

(g) Top different samples. (h) Top similar samples.

Fig. A.13 MNIST medium image shift, univariate two-sample tests + Bonferroni aggre-
gation.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Fig. A.14 MNIST medium image shift, multivariate two-sample tests.
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Small Image Shift
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.
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(e) 50% perturbed samples.
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(f) 100% perturbed samples.

(g) Top different samples. (h) Top similar samples.

Fig. A.15 MNIST small image shift, univariate two-sample tests + Bonferroni aggregation.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Fig. A.16 MNIST small image shift, multivariate two-sample tests.
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Medium Image Shift + Knock-Out Shift
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(f) Knock out 100% of class
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(g) Top different samples. (h) Top similar samples.

Fig. A.17 MNIST medium image shift (50%, fixed) plus knock-out shift (variable),
univariate two-sample tests + Bonferroni aggregation.

101 102 103

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(a) Knock out 10% of class
0.

101 102 103

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(b) Knock out 50% of class
0.

101 102 103

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

NoRed

PCA

SRP

UAE

TAE

BBSDs

(c) Knock out 100% of class
0.

Fig. A.18 MNIST medium image shift (50%, fixed) plus knock-out shift (variable),
multivariate two-sample tests.
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Only-Zero Shift + Medium Image Shift
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.
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(d) 10% perturbed samples.
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(e) 50% perturbed samples.
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(f) 100% perturbed samples.

(g) Top different samples. (h) Top similar samples.

Fig. A.19 MNIST only-zero shift (fixed) plus medium image shift (variable), univariate
two-sample tests + Bonferroni aggregation.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Fig. A.20 MNIST only-zero shift (fixed) plus medium image shift (variable), multivariate
two-sample tests.
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A.1.2 Domain Adaptation MNIST to USPS
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(a) Randomly shuffled dataset with same
split proportions as original dataset.
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(b) Original split.
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(c) Randomly shuffled dataset with same
split proportions as original dataset.
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(d) Original split.

(e) Top different samples. (f) Top similar samples.

Fig. A.21 MNIST to USPS domain adaptation, univariate two-sample tests + Bonferroni
aggregation.
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(a) Randomly shuffled dataset with same
split proportions as original dataset.
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(b) Original split.

Fig. A.22 MNIST to USPS domain adaptation, multivariate two-sample tests.
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A.1.3 CIFAR-10

Adversarial Shift
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(a) 10% adversarial samples.
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(b) 50% adversarial samples.
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(c) 100% adversarial samples.
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(d) 10% adversarial samples.
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(e) 50% adversarial samples.
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(f) 100% adversarial samples.

No samples available as Classif did not detect a shift.

(g) Top different samples.

No samples available as Classif did not detect a shift.

(h) Top similar samples.

Fig. A.23 CIFAR-10 adversarial shift, univariate two-sample tests + Bonferroni aggrega-
tion.
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(a) 10% adversarial samples.
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(b) 50% adversarial samples.
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(c) 100% adversarial samples.

Fig. A.24 CIFAR-10 adversarial shift, multivariate two-sample tests.
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Knock-Out Shift
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(c) Knock out 100% of class
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No samples available as Classif did not detect a shift.

(g) Top different samples.

No samples available as Classif did not detect a shift.

(h) Top similar samples.

Fig. A.25 CIFAR-10 knock-out shift, univariate two-sample tests + Bonferroni aggrega-
tion.
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Fig. A.26 CIFAR-10 knock-out shift, multivariate two-sample tests.
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Large Gaussian Noise Shift
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.
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(d) 10% perturbed samples.
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(e) 50% perturbed samples.
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(f) 100% perturbed samples.

(g) Top different samples. (h) Top similar samples.

Fig. A.27 CIFAR-10 large Gaussian noise shift, univariate two-sample tests + Bonferroni
aggregation.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Fig. A.28 CIFAR-10 large Gaussian noise shift, multivariate two-sample tests.
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Medium Gaussian Noise Shift
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.
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(d) 10% perturbed samples.
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(e) 50% perturbed samples.
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(f) 100% perturbed samples.

No samples available as Classif did not detect a shift.

(g) Top different samples.

No samples available as Classif did not detect a shift.

(h) Top similar samples.

Fig. A.29 CIFAR-10 medium Gaussian noise shift, univariate two-sample tests + Bonfer-
roni aggregation.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Fig. A.30 CIFAR-10 medium Gaussian noise shift, multivariate two-sample tests.
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Small Gaussian Noise Shift
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.

101 102 103 104

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

NoRed

PCA

SRP

UAE

TAE

BBSDs

BBSDh

Classif

(c) 100% perturbed samples.
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(d) 10% perturbed samples.
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(e) 50% perturbed samples.
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(f) 100% perturbed samples.

No samples available as Classif did not detect a shift.

(g) Top different samples.

No samples available as Classif did not detect a shift.

(h) Top similar samples.

Fig. A.31 CIFAR-10 small Gaussian noise shift, univariate two-sample tests + Bonferroni
aggregation.

101 102 103

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Fig. A.32 CIFAR-10 small Gaussian noise shift, multivariate two-sample tests.
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Large Image Shift
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.
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(d) 10% perturbed samples.
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(e) 50% perturbed samples.
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(f) 100% perturbed samples.

(g) Top different samples. (h) Top similar samples.

Fig. A.33 CIFAR-10 large image shift, univariate two-sample tests + Bonferroni aggrega-
tion.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Fig. A.34 CIFAR-10 large image shift, multivariate two-sample tests.
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Medium Image Shift
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.
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(d) 10% perturbed samples.
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(e) 50% perturbed samples.
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(f) 100% perturbed samples.

(g) Top different samples. (h) Top similar samples.

Fig. A.35 CIFAR-10 medium image shift, univariate two-sample tests + Bonferroni
aggregation.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Fig. A.36 CIFAR-10 medium image shift, multivariate two-sample tests.
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Small Image Shift

101 102 103 104

Number of samples from test

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.
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(d) 10% perturbed samples.
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(e) 50% perturbed samples.
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(f) 100% perturbed samples.

(g) Top different samples. (h) Top similar samples.

Fig. A.37 CIFAR-10 small image shift, univariate two-sample tests + Bonferroni aggrega-
tion.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Fig. A.38 CIFAR-10 small image shift, multivariate two-sample tests.
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Medium Image Shift + Knock-Out Shift
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(a) Knock out 10% of class
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(b) Knock out 50% of class
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(c) Knock out 100% of class
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(d) Knock out 10% of class
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(e) Knock out 50% of class 0.
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(f) Knock out 100% of class
0.

(g) Top different samples. (h) Top similar samples.

Fig. A.39 CIFAR-10 medium image shift (50%, fixed) plus knock-out shift (variable),
univariate two-sample tests + Bonferroni aggregation.
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(a) Knock out 10% of class
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(b) Knock out 50% of class
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(c) Knock out 100% of class
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Fig. A.40 CIFAR-10 medium image shift (50%, fixed) plus knock-out shift (variable),
multivariate two-sample tests.
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Only Zero Shift + Medium Image Shift
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.
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(d) 10% perturbed samples.
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(e) 50% perturbed samples.
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(f) 100% perturbed samples.

(g) Top different samples. (h) Top similar samples.

Fig. A.41 CIFAR-10 only-zero shift (fixed) plus medium image shift (variable), univariate
two-sample tests + Bonferroni aggregation.
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(a) 10% perturbed samples.
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(b) 50% perturbed samples.
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(c) 100% perturbed samples.

Fig. A.42 CIFAR-10 only-zero shift (fixed) plus medium image shift (variable), multivari-
ate two-sample tests.
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A.2 Original Splits

A.2.1 MNIST
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(a) Randomly shuffled dataset with same
split proportions as original dataset.
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(b) Original split.
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(c) Randomly shuffled dataset with same
split proportions as original dataset.
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(d) Original split.

(e) Top different samples. (f) Top similar samples.

Fig. A.43 MNIST randomized and original split, univariate two-sample tests + Bonferroni
aggregation.
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(a) Randomly shuffled dataset with same
split proportions as original dataset.
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(b) Original split.

Fig. A.44 MNIST randomized and original split, multivariate two-sample tests.
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A.2.2 Fashion MNIST
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(a) Randomly shuffled dataset with same
split proportions as original dataset.
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(b) Original split.
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(c) Randomly shuffled dataset with same
split proportions as original dataset.
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(d) Original split.

No samples available as Classif did not detect a shift.

(e) Top different samples.

No samples available as Classif did not detect a shift.

(f) Top similar samples.

Fig. A.45 Fashion MNIST randomized and original split, univariate two-sample tests +
Bonferroni aggregation.
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(a) Randomly shuffled dataset with same
split proportions as original dataset.
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(b) Original split.

Fig. A.46 Fashion MNIST randomized and original split, multivariate two-sample tests.
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A.2.3 CIFAR-10
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(a) Randomly shuffled dataset with same
split proportions as original dataset.
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(b) Original split.
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(c) Randomly shuffled dataset with same
split proportions as original dataset.
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(d) Original split.

No samples available as Classif did not detect a shift.

(e) Top different samples.

No samples available as Classif did not detect a shift.

(f) Top similar samples.

Fig. A.47 CIFAR-10 randomized and original split, univariate two-sample tests + Bon-
ferroni aggregation.
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(a) Randomly shuffled dataset with same
split proportions as original dataset.
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(b) Original split.

Fig. A.48 CIFAR-10 randomized and original split, multivariate two-sample tests.
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A.2.4 SVHN
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(a) Randomly shuffled dataset with same
split proportions as original dataset.
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(b) Original split.
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(c) Randomly shuffled dataset with same
split proportions as original dataset.
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(d) Original split.

(e) Top different samples. (f) Top similar samples.

Fig. A.49 SVHN randomized and original split, univariate two-sample tests + Bonferroni
aggregation.
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(a) Randomly shuffled dataset with same
split proportions as original dataset.
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(b) Original split.

Fig. A.50 SVHN randomized and original split, multivariate two-sample tests.
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